Skip to main content
Log in

Structural and mechanistic insights into the oxy form of tyrosinase from molecular dynamics simulations

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The first, long time scale (16-ns) ligand field molecular dynamics (LFMD) simulations of the oxy form of tyrosinase are reported. The calculations use our existing type 3 copper force field for the peroxido-bridged [Cu2O2]2+ unit which is here translated from MMFF into the AMBER format together with a new charge scheme. The protein secondary and tertiary structures are not significantly altered by removing the ‘caddie’ protein, ORF378, which must be bound to tyrosinase before crystals will grow. A comprehensive principal component analysis of the Cartesian coordinates from the final 8 ns shows that the protein backbone is relatively rigid. However, the significant butterfly fold of the [Cu2O2]2+ moiety observed in the X-ray structure, presumably due to the caddie protein tyrosine at the active site, is absent in the simulations. LFMD gives a clear and persistent distinction between equatorial and axial Cu–N distances, with the latter about 0.2 Å longer and remaining syn to each other. However, the two coordination spheres display important differences. LFMD simulations of the symmetric model complex [μ-η22-O2{Cu(Meim)3}2]2+ (Meim is 5-methyl-1H-imidazole) provide a mechanism for synanti interchange of axial ligands which suggests, in combination with the old experimental X-ray data, the new LFMD simulations and traditional coordination chemistry arguments, that His54 on CuA is ‘insipiently axial’ and that a combination of a butterfly distortion of the [Cu2O2]2+ group and a rotation of the CuA(His)3 moiety converts the vacant, initially axial, binding site on CuA into a much more favourable equatorial site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The LFMM and AMBER parameters used in this study plus the 2007 version of DommiMOE can be downloaded from http://www.warwick.ac.uk/go/iccg/research/lfmm. Note that a valid licence for MOE will be required; this can be obtained separately from Chemical Computing Group.

References

  1. Itoh S (2004) In: Que L, Tolman WB (eds) Dicopper enzymes. Elsevier, Amsterdam, pp 369–393

  2. Itoh S, Fukuzumi S (2007) Acc Chem Res 40:592–600

    Article  CAS  PubMed  Google Scholar 

  3. Gerdemann C, Eicken C, Krebs B (2002) Acc Chem Res 35:183–191

    Article  CAS  PubMed  Google Scholar 

  4. Decker H, Schweikardt T, Nillius D, Salzbrunn U, Jaenicke E, Tuczek F (2007) Gene 398:183–191

    Article  CAS  PubMed  Google Scholar 

  5. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981–8990

    Article  CAS  PubMed  Google Scholar 

  6. Decker H, Dillinger R, Tuczek F (2000) Angew Chem Int Ed 39:1591

    Article  CAS  Google Scholar 

  7. Lind T, Siegbahn PEM, Crabtree RH (1999) J Phys Chem B 103:1193

    Article  CAS  Google Scholar 

  8. Siegbahn PEM (2003) J Biol Chem 8:567–576

    CAS  Google Scholar 

  9. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    Article  CAS  PubMed  Google Scholar 

  10. Decker H, Schweikardt T, Tuczek F (2006) Angew Chem Int Ed 45:4546–4550

    Article  CAS  Google Scholar 

  11. Kitajima N, Fujisawa K, Moro-oka Y, Toriumi K (1989) J Am Chem Soc 111:8975–8976

    Article  CAS  Google Scholar 

  12. Kitajima N, Fujisawa K, Fujimoto C, Moro-oka Y, Hashimoto S, Kitagawa T, Toriumi K, Tatsumi K, Nakamura A (1992) J Am Chem Soc 114:1277–1291

    Article  CAS  Google Scholar 

  13. Lam BMT, Halfen JA (2000) Inorg Chem 39:4059–4072

    Article  CAS  PubMed  Google Scholar 

  14. Kodera M, Kajita Y, Tachi Y, Katayama K, Kano K, Hirota S, Fujinami S, Suzuki M (2004) Angew Chem Int Ed 43:334–337

    Article  CAS  Google Scholar 

  15. Kodera M, Katayama K, Tachi Y, Kano K, Hirota S, Fujinami S, Suzuki M (1999) J Am Chem Soc 121:11006–11007

    Article  CAS  Google Scholar 

  16. Burton VJ, Deeth RJ, Kemp CM, Gilbert PJ (1995) J Am Chem Soc 117:8407–8415

    Article  CAS  Google Scholar 

  17. Cramer CJ, Wloch M, Piecuch P, Puzzarini C, Gagliardi L (2006) J Phys Chem A 110:1991–2004

    Article  CAS  PubMed  Google Scholar 

  18. Rode MF, Werner HJ (2005) Theor Chem Acc 114:309–317

    Article  CAS  Google Scholar 

  19. Liu XY, Palacios AA, Novoa JJ, Santiago A (1998) Inorg Chem 37:1202–1212

    Article  CAS  PubMed  Google Scholar 

  20. Siegbahn PEM (2003) Faraday Discuss 124:289–296

    Article  CAS  PubMed  Google Scholar 

  21. Henson MJ, Mukherjee P, Root DE, Stack TDP, Solomon EI (1999) J Am Chem Soc 121:10332–10345

    Article  CAS  Google Scholar 

  22. Siegbahn PEM (2004) J Biol Chem 9:577–590

    CAS  Google Scholar 

  23. Gueell MG, Siegbahn PEM (2007) J Biol Chem 12:1251–1264

    CAS  Google Scholar 

  24. Piquemal JP, Maddaluno J, Silvi B, Giessner-Prettre C (2003) New J Chem 27:909–913

    Article  CAS  Google Scholar 

  25. Lin H, Truhlar DG (2007) Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

  26. Deeth RJ (2009) In: Solomon EI, King RB, Scott RA (eds) Molecular mechanics in bioinorganic chemistry. Wiley, Chichester

  27. Deeth RJ, Anastasi A, Diedrich C, Randell K (2009) Coord Chem Rev 253:795–816

    Article  CAS  Google Scholar 

  28. Deeth RJ, Fey N, Williams-Hubbard B (2004) J Comput Chem 26:123–130

    Article  Google Scholar 

  29. Diedrich C, Deeth RJ (2008) Inorg Chem 47:2494

    Article  CAS  PubMed  Google Scholar 

  30. Halgren TA (1996) J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  31. Halgren TA (1996) J Comput Chem 17:520–552

    Article  CAS  Google Scholar 

  32. Halgren TA (1996) J Comput Chem 17:553–586

    Article  CAS  Google Scholar 

  33. Halgren TA, Nachbar RB (1996) J Comput Chem 17:587–615

    CAS  Google Scholar 

  34. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  35. Deeth RJ (2007) Inorg Chem 46:4492–4503

    Article  CAS  PubMed  Google Scholar 

  36. Deeth RJ (2006) Chem Commun (24):2551–2553

  37. Cieplak P, Caldwell J, Kollman P (2001) J Comput Chem 22:1048–1057

    Article  CAS  Google Scholar 

  38. Schaeffer CE, Jorgensen CK (1965) Mol Phys 9:401

    Article  CAS  Google Scholar 

  39. Deeth RJ, Fey N, Williams-Hubbard BJ (2005) J Comput Chem 26:123–130

    Article  CAS  PubMed  Google Scholar 

  40. Comba P, Remenyi R (2002) J Comput Chem 23:697–705

    Article  CAS  PubMed  Google Scholar 

  41. Baerends EJ, Bérces A, Bo C, Boerrigter PM, Cavallo L, Deng L, Dickson RM, Ellis DE, Fan L, Fischer TH, Fonseca Guerra C, van Gisbergen SJA, Groeneveld JA, Gritsenko OV, Harris FE, van den Hoek P, Jacobsen H, van Kessel G, Kootstra F, van Lenthe E, Osinga VP, Philipsen PHT, Post D, Pye CC, Ravenek W, Ros P, Schipper PRT, Schreckenbach G, Snijders JG, Sola M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visser O, van Wezenbeek E, Wiesenekker G, Wolff SK, Woo TK, Ziegler T (2008) ADF 2008.01. Scientific Computing and Modelling, Free University, Amsterdam

  42. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  PubMed  Google Scholar 

  43. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  44. Baerends EJ, Ellis DE, Ros O (1972) Theor Chim Acta 27:339

    Article  CAS  Google Scholar 

  45. Singh UC, Kollman PA (1984) J Comput Chem 5:129

    Article  CAS  Google Scholar 

  46. Besler BH, Jr KMM, Kollman PA (1990) J Comput Chem 11:431

    Article  CAS  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Wallingford

  48. Chemical Computing Group (2006) Molecular Operating Environment, 2006.06. Chemical Computing Group, Montreal

  49. Li H, Robertson AD, Jensen JH (2005) Proteins 61:704

    Article  CAS  PubMed  Google Scholar 

  50. Bond SD, Leimkuhler BJ, Laird BB (1999) J Comput Phys 151:114

    Article  CAS  Google Scholar 

  51. Hayward S, Kitao S, Hirata F, Go N (1993) J Mol Biol 234:1207–1217

    Article  CAS  PubMed  Google Scholar 

  52. Balsera MA, Wriggers W, Oono Y, Schulten K (1996) J Phys Chem 100:2567–2572

    Article  CAS  Google Scholar 

  53. Lange OF, Grubmueller H (2006) J Phys Chem B 110:22842–22852

    Article  CAS  PubMed  Google Scholar 

  54. Deeth RJ, Gerloch M (1985) Inorg Chem 24:4490–4493

    Article  CAS  Google Scholar 

  55. Deeth RJ, Hearnshaw LJA (2006) Dalton Trans 1092–1100

  56. Metz M, Solomon EI (2001) J Am Chem Soc 123:4938–4950

    Article  CAS  PubMed  Google Scholar 

  57. Tepper AWJW, Bubacco L, Canters GW (2005) J Am Chem Soc 127:567–575

    Article  CAS  PubMed  Google Scholar 

  58. Bubacco L, van Gastel M, Groenen EJJ, Vijgenboom E, Canters GW (2003) J Biol Chem 278:7381–7389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Deutsche Akademische Austausch Dienst and BBSRC for a postdoctoral fellowship (C.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Deeth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deeth, R.J., Diedrich, C. Structural and mechanistic insights into the oxy form of tyrosinase from molecular dynamics simulations. J Biol Inorg Chem 15, 117–129 (2010). https://doi.org/10.1007/s00775-009-0577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0577-6

Keywords

Navigation