Skip to main content
Log in

The metal-binding features of the recombinant mussel Mytilus edulis MT-10-IV metallothionein

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In contrast with the paradigmatic mammalian metallothioneins (MTs), mollusc MT systems consist at least of a high-cadmium induced form, possibly involved in detoxification, and another isoform either constitutive or regulated by essential metals and probably associated with housekeeping metabolism. With the aim of providing a deeper characterization of the coordination features of a molluscan MT peptide of the latter kind, we have analyzed here the metal-binding abilities of the recombinant MeMT-10-IV isoform of Mytilus edulis (MeMT). Also, comparison with other MTs of this type has been undertaken. A synthetic complementary DNA was constructed, cloned and expressed into two Escherichia coli systems. Upon zinc coordination, MeMT folds in vivo into highly chiral and stable Zn7 complexes, with an exceptional reluctance to fully substitute cadmium(II) and/or copper(I) for zinc(II). In vivo cadmium binding leads to homometallic Cd7 complexes that structurally differ from any of the in vitro prepared Cd7 complexes. Homometallic Cu–MeMT can only be obtained in vitro from Zn7–MeMT after a great molar excess of copper(I) has been added. In vivo, two different heterometallic Zn,Cu–MeMT complexes are recovered, which nicely correspond to two distinct stages of the in vitro zinc/copper replacement. These MeMT metal-binding features are consistent with a physiological role related to basal/housekeeping metal, mainly zinc, metabolism, and confirm the correspondence between the MeMT gene response pattern and the functional properties of the encoded protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kägi JHR (1993) In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III, biological roles and medical implications. Birkhaüser, Basel, pp 29–55

    Google Scholar 

  2. Arseniev A, Schultze P, Wörgötter E, Braun W, Wagner G, Vasák M, Kägi JHR, Wüthrich K (1988) J Mol Biol 201:637–657

    Article  PubMed  CAS  Google Scholar 

  3. Robbins AH, McRee DE, Williamson M, Collett SA, Xuong NH, Furey WF, Wang BC, Stout CD (1991) J Mol Biol 221:1269–1293

    PubMed  CAS  Google Scholar 

  4. Riek R, Prêcheur B, Wang Y, Mackay EA, Wider G, Güntert P, Liu A, Kägi JHR, Wüthrich K (1999) J Mol Biol 291:417–428

    Article  PubMed  CAS  Google Scholar 

  5. Narula SS, Brouwer M, Hua Y, Armitage IM (1995) Biochemistry 34:620–631

    Article  PubMed  CAS  Google Scholar 

  6. Zhu Z, DeRose EF, Mullen GP, Petering DH, Shaw CF III (1994) Biochemistry 33:8858–8865

    Article  PubMed  CAS  Google Scholar 

  7. Egli D, Domènech J, Selvaraj A, Balamurugan K, Hua H, Capdevila M, Georgiev O, Schaffner W, Atrian S (2006) Genes Cells 11:647–658

    Article  PubMed  CAS  Google Scholar 

  8. Valls M, Bofill R, González-Duarte R, González-Duarte P, Capdevila M, Atrian S (2001) J Biol Chem 276:32835–32843

    Article  PubMed  CAS  Google Scholar 

  9. Syring RA, Hoexum-Brouwer T, Brouwer M (2000) Comp Biochem Physiol C 125:325–332

    CAS  Google Scholar 

  10. Valls M, Bofill R, Romero-Isart N, González-Duarte R, Abián J, Carrascal M, González-Duarte P, Capdevila M, Atrian S (2000) FEBS Lett 467:189–194

    Article  PubMed  CAS  Google Scholar 

  11. Domènech J, Palacios O, Villarreal L, González-Duarte P, Capdevila M, Atrian S (2003) FEBS Lett 533:72–78

    Article  PubMed  Google Scholar 

  12. Dallinger R, Berger B, Hunziker P, Kägi JHR (1997) Nature 338:237–238

    Article  CAS  Google Scholar 

  13. Amiard J-C, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Aquat Toxicol 76:160–202

    Article  PubMed  CAS  Google Scholar 

  14. Ceratto N, Dondero F, van de Loo J-W, Burlando B, Viarengo A (2002) Comp Biochem Physiol C 131:217–222

    Google Scholar 

  15. Hardivillier Y, Leignel V, Denis F, Uguen G, Cosson R, Laulier M (2004). Comp Biochem Physiol C 139:111–118

    Article  CAS  Google Scholar 

  16. Leignel V, Laulier M (2006) Comp Biochem Physiol C 142:12–18

    Google Scholar 

  17. Baršyte D, White KN, Lovejoy DA (1999) Comp Biochem Physiol C 122:287–296

    Article  PubMed  Google Scholar 

  18. Lemoine S, Laulier M (2003) Mar Pollut Bull 46:1450–1455

    Article  CAS  Google Scholar 

  19. Ciocan CM, Rotchell JM (2004) Environ Sci Technol 38:1073–1078

    Article  PubMed  CAS  Google Scholar 

  20. Grattarola M, Carloni M, Dondero F, Viarengo A, Vergani L (2006) Mol Biol Rep 33:265–272

    Article  PubMed  CAS  Google Scholar 

  21. Lemoine S, Bigot Y, Sellos D, Cosson RP, Laulier M (2000) Mar Biotechnol 2:195–203

    PubMed  CAS  Google Scholar 

  22. Mackay EA, Overnell J, Dunbar B, Davison I, Hunziker PE, Kägi JHR, Fothergill JE (1993) Eur J Biochem 218:183–194

    Article  PubMed  CAS  Google Scholar 

  23. Wang Y, Mackay EA, Kurasaki M, Kägi JHR (1994) Eur J Biochem 225:449–457

    Article  PubMed  CAS  Google Scholar 

  24. Capdevila M, Cols N, Romero-Isart N, Gonzàlez-Duarte R, Atrian S, Gonzàlez-Duarte P (1997) Cell Mol Life Sci 53:681–688

    Article  PubMed  CAS  Google Scholar 

  25. Cols N, Romero-Isart N, Capdevila M, Oliva B, Gonzàlez-Duarte P, Gonzàlez-Duarte R, Atrian S (1997) J Inorg Biochem 68:157–166

    Article  PubMed  CAS  Google Scholar 

  26. Vasák M (1991) Methods Enzymol 205:452–458

    Article  PubMed  Google Scholar 

  27. Bongers J, Walton CD, Richardson DE, Bell JU (1988) Anal Chem 60:2683–2686

    Article  PubMed  CAS  Google Scholar 

  28. Capdevila M, Domènech J, Pagani A, Tío L, Villarreal L, Atrian S (2005) Angew Chem Int Ed 44:4618–4622

    Article  CAS  Google Scholar 

  29. Bofill R, Palacios O, Capdevila M, Cols N, González-Duarte R, Atrian S, González-Duarte P (1999) J Inorg Biochem 73:57–64

    Article  PubMed  CAS  Google Scholar 

  30. Domènech J, Orihuela R, Mir G, Molinas M, Atrian S, Capdevila M (2007) J Biol Inorg Chem 12:867–882

    Article  PubMed  CAS  Google Scholar 

  31. Fabris D, Zaia J, Hathout Y, Fesenlau C (1996) J Am Chem Soc 118:12242–12243

    Article  CAS  Google Scholar 

  32. Pagani A, Villarreal L, Capdevila M, Atrian S (2007) Mol Microbiol 63:256–269

    Article  PubMed  CAS  Google Scholar 

  33. Gehrig PM, You C, Dallinger R, Gruber C, Brouwer M, Kägi JHR, Hunziker PE (2000) Protein Sci 9:395–402

    PubMed  CAS  Google Scholar 

  34. Vergani L, Grattarola M, Borghi C, Dondero F, Viarengo A (2005) FEBS J 272:6014–6023

    Article  PubMed  CAS  Google Scholar 

  35. Vergani L, Grattarola M, Grasselli E, Dondero F, Viarengo A (2007) Arch Biochem Biophys 465:247–253

    Article  PubMed  CAS  Google Scholar 

  36. Villarreal L, Tío L, Atrian S, Capdevila M (2005) Arch Biochem Biophys 435:331–335

    Article  PubMed  CAS  Google Scholar 

  37. Otvos JD, Olafson RW, Armitage IM (1982) J Biol Chem 257:2427–2431

    PubMed  CAS  Google Scholar 

  38. Overnell J, Good M, Vasák M (1988) Eur J Biochem 172:171–177

    Article  PubMed  CAS  Google Scholar 

  39. You C, Mackay EA, Gehrig PM, Hunziker PE, Kägi JHR (1999) Arch Biochem Biophys 372:44–52

    Article  PubMed  CAS  Google Scholar 

  40. Stürzenbaum SR, Winters C, Galay M, Morgan AJ, Kille P (2001) J Biol Chem 276:34013–34018

    Article  PubMed  Google Scholar 

  41. Jensen LT, Peltier JM, Winge DR (1998) J Biol Inorg Chem 3:627–631

    Article  CAS  Google Scholar 

  42. Roschitzki B, Vasák M (2002) J Biol Inorg Chem 7:611–616

    Article  PubMed  CAS  Google Scholar 

  43. Bofill R, Capdevila M, Cols N, Atrian S, González-Duarte P (2001) J Biol Inorg Chem 6:405–417

    Article  PubMed  CAS  Google Scholar 

  44. Dolderer B, Echner H, Beck A, Hartmann HJ, Weser U, Luchinat C, Del Bianco C (2007) FEBS J 274:2349–2362

    Article  PubMed  CAS  Google Scholar 

  45. Morgan AJ, Morris B (1982) Histochemistry 75:269–285

    Article  PubMed  CAS  Google Scholar 

  46. George SG (1983) Comp Biochem Physiol C 76:53–57

    Article  PubMed  CAS  Google Scholar 

  47. Tío L, Villarreal L, Atrian S, Capdevila M (2004) J Biol Chem 279:24403–24413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish Ministerio de Ciencia y Tecnología grants BIO2006-14420-C02-01 for S.A. and BIO2006-14420-C02-02 for M.C. R.O. received a predoctoral fellowship from the Departament de Química, Universitat Autònoma de Barcelona. We thank the Serveis Científico-Tècnics, Universitat de Barcelona (gas chromatography–flame photometric detection, ICP–AES, ESI–MS, DNA sequencing) and the Servei d’Anàlisi Química (SAQ), Universitat Autònoma de Barcelona (CD, UV–vis) for allocating instrument time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvia Atrian.

Additional information

R. Orihuela and J. Domènech contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (PDF 201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orihuela, R., Domènech, J., Bofill, R. et al. The metal-binding features of the recombinant mussel Mytilus edulis MT-10-IV metallothionein. J Biol Inorg Chem 13, 801–812 (2008). https://doi.org/10.1007/s00775-008-0367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0367-6

Keywords

Navigation