Skip to main content
Log in

Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nitrate reductase from Desulfovibrio desulfuricans ATCC 27774 (DdNapA) is a monomeric protein of 80 kDa harboring a bis(molybdopterin guanine dinucleotide) active site and a [4Fe–4S] cluster. Previous electron paramagnetic resonance (EPR) studies in both catalytic and inhibiting conditions showed that the molybdenum center has high coordination flexibility when reacted with reducing agents, substrates or inhibitors. As-prepared DdNapA samples, as well as those reacted with substrates and inhibitors, were crystallized and the corresponding structures were solved at resolutions ranging from 1.99 to 2.45 Å. The good quality of the diffraction data allowed us to perform a detailed structural study of the active site and, on that basis, the sixth molybdenum ligand, originally proposed to be an OH/OH2 ligand, was assigned as a sulfur atom after refinement and analysis of the B factors of all the structures. This unexpected result was confirmed by a single-wavelength anomalous diffraction experiment below the iron edge (λ = 1.77 Å) of the as-purified enzyme. Furthermore, for six of the seven datasets, the S–S distance between the sulfur ligand and the Sγ atom of the molybdenum ligand CysA140 was substantially shorter than the van der Waals contact distance and varies between 2.2 and 2.85 Å, indicating a partial disulfide bond. Preliminary EPR studies under catalytic conditions showed an EPR signal designated as a turnover signal (g values 1.999, 1.990, 1.982) showing hyperfine structure originating from a nucleus of unknown nature. Spectropotentiometric studies show that reduced methyl viologen, the electron donor used in the catalytic reaction, does not interact directly with the redox cofactors. The turnover signal can be obtained only in the presence of the reaction substrates. With use of the optimized conditions determined by spectropotentiometric titration, the turnover signal was developed with 15N-labeled nitrate and in D2O-exchanged DdNapA samples. These studies indicate that this signal is not associated with a Mo(V)–nitrate adduct and that the hyperfine structure originates from two equivalent solvent-exchangeable protons. The new coordination sphere of molybdenum proposed on the basis of our studies led us to revise the currently accepted reaction mechanism for periplasmic nitrate reductases. Proposals for a new mechanism are discussed taking into account a molybdenum and ligand-based redox chemistry, rather than the currently accepted redox chemistry based solely on the molybdenum atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2

Similar content being viewed by others

Abbreviations

Bis-MGD:

Bis(molybdopterin guanosine dinucleotide)

DdNapA:

Periplasmic nitrate reductase from Desulfovibrio desulfuricans ATCC 27774

DMSO:

Dimethyl sulfoxide

DTT:

Dithiothreitol

EcFdh-H:

Formate dehydrogenase from Escherichia coli

EcNapA:

Periplasmic nitrate reductase from Escherichia coli

EPR:

Electron paramagnetic resonance

EXAFS:

Extended X-ray absorption fine structure

Fdh:

Formate dehydrogenase

MES:

2-Morpholinoethanesulfonic acid

MV:

Methyl viologen

Nap:

Periplasmic nitrate reductase

Nar:

Respiratory nitrate reductase

NR:

Nitrate reductase

PEG 8K:

Poly(ethylene glycol) 8,000

RsNapAB:

Heterodimeric periplasmic nitrate reductase from Rhodobacter sphaeroides

SeNarB:

Assimilatory nitrate reductase from Synechococcus elongatus

TCEP:

Tris(2-carboxyethyl)phosphine hydrochloride

Tricine:

N-Tris(hydroxymethyl)methylglycine

References

  1. Zumft WG (1997) Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

  2. Gonzalez PJ, Correia C, Moura I, Brondino CD, Moura JJ (2006) J Inorg Biochem 100:1015–1023

    Article  PubMed  CAS  Google Scholar 

  3. Richardson DJ (2000) Microbiology 146(Pt 3):551–571

    PubMed  CAS  Google Scholar 

  4. Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJ, Moura I, Romao MJ (1999) Structure 7:65–79

    Article  PubMed  CAS  Google Scholar 

  5. Arnoux P, Sabaty M, Alric J, Frangioni B, Guigliarelli B, Adriano JM, Pignol D (2003) Nat Struct Biol 10:928–934

    Article  PubMed  CAS  Google Scholar 

  6. Jepson BJ, Mohan S, Clarke TA, Gates AJ, Cole JA, Butler CS, Butt JN, Hemmings AM, Richardson DJ (2007) J Biol Chem 282:6425–6437

    Article  PubMed  CAS  Google Scholar 

  7. Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJ, Moura I, Romão MJ (2002) Structure 10:1261–1272

    Article  PubMed  CAS  Google Scholar 

  8. Raaijmakers HC, Romão MJ (2006) J Biol Inorg Chem 11:849–854

    Article  PubMed  CAS  Google Scholar 

  9. Gonzalez PJ, Rivas MG, Brondino CD, Bursakov SA, Moura I, Moura JJ (2006) J Biol Inorg Chem 11:609–616

    Article  PubMed  CAS  Google Scholar 

  10. Butler CS, Charnock JM, Bennett B, Sears HJ, Reilly AJ, Ferguson SJ, Garner CD, Lowe DJ, Thomson AJ, Berks BC, Richardson DJ (1999) Biochemistry 38:9000–9012

    Article  PubMed  CAS  Google Scholar 

  11. Brondino CD, Rivas MG, Romão MJ, Moura JJ, Moura I (2006) Acc Chem Res 39:788–796

    Article  PubMed  CAS  Google Scholar 

  12. Frangioni B, Arnoux P, Sabaty M, Pignol D, Bertrand P, Guigliarelli B, Leger C (2004) J Am Chem Soc 126:1328–1329

    Article  PubMed  CAS  Google Scholar 

  13. Jepson BJ, Anderson LJ, Rubio LM, Taylor CJ, Butler CS, Flores E, Herrero A, Butt JN, Richardson DJ (2004) J Biol Chem 279:32212–32218

    Article  PubMed  CAS  Google Scholar 

  14. Liu MC, Peck HD Jr (1981) J Biol Chem 256:13159–13164

    PubMed  CAS  Google Scholar 

  15. Dias JM, Bursakov S, Carneiro C, Moura JJ, Moura I, Romão MJ (1999) Acta Crystallogr D Biol Crystallogr 55:877–879

    Article  PubMed  CAS  Google Scholar 

  16. Leslie AGW (1992) Joint CCP4 and ESF-EACBM newsletters on protein crystallography 26

  17. Kabsch W (1978) Acta Crystallogr A34:827–828

    Google Scholar 

  18. Collaborative-Computational-Project-4 (1994) Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  19. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  PubMed  CAS  Google Scholar 

  20. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Acta Crystallogr A47:110–119

    CAS  Google Scholar 

  21. Emsley P, Cowtan K (2004) Acta Crystallogr Sect D Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  22. Schneider TR (2000) Acta Crystallogr D Biol Crystallogr 56:714–721

    Article  PubMed  CAS  Google Scholar 

  23. Schneider TR (2002) Acta Crystallogr D Biol Crystallogr 58:195–208

    Article  PubMed  Google Scholar 

  24. Astashkin AV, Klein EL, Enemark JH (2007) J Inorg Biochem 101:1623–1629

    Article  PubMed  CAS  Google Scholar 

  25. Bray RC, Gutteridge S, Lamy MT, Wilkinson T (1983) Biochem J 211:227–236

    PubMed  CAS  Google Scholar 

  26. Coelho C, Gonzalez PJ, Trincão J, Carvalho AL, Najmudin S, Hettman T, Dieckman S, Moura JJ, Moura I, Romão MJ (2007) Acta Crystallogr Sect F Struct Biol Crystallogr Commun 63:516–519

    Article  Google Scholar 

  27. George GN, Colangelo CM, Dong J, Scott RA, Khangulov SV, Gladyshev VN, Stadtman TC (1998) J Am Chem Soc 120:1267–1273

    Article  CAS  Google Scholar 

  28. George GN, Costa C, Moura JJG, Moura I (1999) J Am Chem Soc 121:2625–2626

    Article  CAS  Google Scholar 

  29. Bursakov SA, Carneiro C, Almendra MJ, Duarte RO, Caldeira J, Moura I, Moura JJ (1997) Biochem Biophys Res Commun 239:816–822

    Article  PubMed  CAS  Google Scholar 

  30. Gonzalez PJ (2006) Chemistry. Universidade Nova de Lisboa, Lisbon, p 114

    Google Scholar 

  31. Hille R (1996) Chem Rev 96:2757–2816

    Article  PubMed  CAS  Google Scholar 

  32. Hofmann M (2007) J Biol Inorg Chem 12:989–1001

    Article  PubMed  CAS  Google Scholar 

  33. Stiefel EI, Miller KF, Bruce AE, Corbin JL, Berg JM, Hodgson KO (1980) J Am Chem Soc 102(10):3624–3626

    Article  CAS  Google Scholar 

  34. Berg JM, Spira DJ, Hodgson KO, Bruce AE, Miller KF, Corbin JL, Stiefel EI (1984) Inorg Chem 23:3412–3418

    Article  CAS  Google Scholar 

  35. Laughlin LJ, Eagle AA, George GN, Tiekink ER, Young CG (2007) Inorg Chem 46:939–948

    Article  PubMed  CAS  Google Scholar 

  36. Stiefel EI (2007) In: Bertini I, Gray HB, Stiefel EI, Valentine JS (eds) Biological inorganic chemistry: structure and reactivity. University Science Books, Sausalito, pp 1–30

  37. Young CG (2007) J Inorg Biochem 101:1562–1585

    Article  PubMed  CAS  Google Scholar 

  38. Groysman S, Holm RH (2007) Inorg Chem 46:4090–4102

    Article  PubMed  CAS  Google Scholar 

  39. Jiang J, Holm RH (2004) Inorg Chem 43:1302–1310

    Article  PubMed  CAS  Google Scholar 

  40. Tenderholt AL, Szilagyi RK, Holm RH, Hodgson KO, Hedman B, Solomon EI (2007) J Inorg Biochem 101:1594–1600

    Article  PubMed  CAS  Google Scholar 

  41. Brown DS, Owens CF, Wilson BG, Welker ME (1990) Organometallics 10:875–879

    Google Scholar 

  42. Faller JW, Ma Y (1989) Organometallics 8:609–612

    Article  CAS  Google Scholar 

  43. Rys AZ, Lebuis AM, Shaver A, Harpp DN (1999) Organometallics 18:1113–1115

    Article  CAS  Google Scholar 

  44. Halcrow MA, Huffman JC, Christou G (1994) Inorg Chem 33:3639–3644

    Article  CAS  Google Scholar 

  45. Sugimoto H, Sakurai T, Miyake H, Tanaka K, Tsukube H (2005) Inorg Chem 44:6927–6929

    Article  PubMed  CAS  Google Scholar 

  46. Moura JJ, Brondino CD, Trincão J, Romão MJ (2004) J Biol Inorg Chem 9:791–799

    Article  PubMed  CAS  Google Scholar 

  47. Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC (2003) Nat Struct Biol 10:681–687

    Article  PubMed  CAS  Google Scholar 

  48. Jormakka M, Richardson D, Byrne B, Iwata S (2004) Structure 12:95–104

    Article  PubMed  CAS  Google Scholar 

  49. Delano WL (2002) The PyMOL molecular graphics system. Delano Scientific, San Carlos

    Google Scholar 

Download references

Acknowledgements

P.J.G. (SFRH/BD/10825/2002) and S.N. (SFRH/BD/10784/2004) thank FCT for a fellowship grant. C.D.B. and J.J.G.M. thank SECYT (Argentina) and GRICES (Portugal) for a binational grant. This work was supported by project POCI/QUI/57641/2004 financed by the program POCI2010 and cofinanced by FEDER (EC HPRN-CT-1999-00084, PDCT/QUI/57701/2004, POCTI/1999/BME/35078, POCI/QUI/55985/2004, and POCTI/1999/BME/36152) in Portugal, and SEPCYT:PICT 2003-06-13872, CONICET PIP 5370, and CAI+D-UNL in Argentina. C.D.B. is a member of CONICET-Argentina.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos D. Brondino or Maria J. Romão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najmudin, S., González, P.J., Trincão, J. et al. Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum. J Biol Inorg Chem 13, 737–753 (2008). https://doi.org/10.1007/s00775-008-0359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0359-6

Keywords

Navigation