Skip to main content
Log in

Molecular mechanism of antidiabetic zinc–allixin complexes: regulations of glucose utilization and lipid metabolism

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We previously reported new zinc complexes of allixin [bis(allixinato)zinc] and its derivative bis(thioallixin-N-methyl)zinc that demonstrated excellent antidiabetic activity in type 2 diabetic mellitus KKAy mice. However, the molecular mechanism of these complexes is not fully understood. Thus, we attempted to reveal the intracellular mechanism of these complexes in 3T3-L1 adipocytes. Both zinc complexes induced Akt/protein kinase B (Akt/PKB) phosphorylation. The phosphorylation of Akt/PKB enhanced glucose transporter 4 translocation to the plasma membrane; this in turn enhanced the glucose utilization in a dose- and time-dependent manner. Glucose utilization by the complexes depended on the intracellular zinc concentration. Moreover, zinc complexes suppressed the cyclic AMP dependent protein kinase mediated phosphorylation of hormone-sensitive lipase (HSL), leading to the inhibition of free fatty acid release from the 3T3-L1 adipocytes. Such responses were inhibited by wortmannin, suggesting that the suppression of HSL by zinc complexes was dependent in the phosphoinositide 3-kinase–Akt/PKB signaling cascade. On the basis of these results, we proposed that both zinc complexes activated the Akt/PKB-mediated insulin-signaling pathway and improved both glucose utilization and lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BSA:

Bovine serum albumin

cAMP:

Cyclic AMP

DM:

Diabetes mellitus

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

FFA:

Free fatty acid

GLUT4:

Glucose transporter 4

HSL:

Hormone-sensitive lipase

IBMX:

3-Isobutyl-1-methylxanthine

IRβ:

Insulin receptor β-subunit

2-NBDG:

2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-deoxy-d-glucose

PBS:

Phosphate-buffered saline

PDE:

Phosphodiesterase

PDE3B:

Phosphodiesterase 3B

PI3K:

Phosphoinositide 3-kinase

PKA:

Cyclic AMP dependent protein kinase

PKB:

Protein kinase B

PTEN:

Phosphatases and tensin homologue deleted chromosome 10

Zn(alx)2 :

Bis(allixinato)zinc

Zn(tanm)2 :

Bis(thioallixin-N-methyl)zinc

References

  1. Guyton AC, Hall JE (eds) (2006) Textbook of medical physiology, 11th edn. Elsevier Saunders, Philadelphia

    Google Scholar 

  2. American Diabetes Association (2006) Diagnosis and classification of diabetes mellitus. Diabetes Care 29(Suppl. 1):S43–S48

    Google Scholar 

  3. Turkoski BB (2006) Orthop Nurs 25:227–231

    PubMed  Google Scholar 

  4. Moller DE (2001) Nature 414:821–827

    Article  PubMed  CAS  Google Scholar 

  5. Sakurai H (2002) Chem Rec 2:237–248

    Article  PubMed  CAS  Google Scholar 

  6. Sakurai H, Fujisawa Y, Fijimoto S, Yasui H, Takino T (1999) J Trace Elem Exp Med 12:393–401

    Article  CAS  Google Scholar 

  7. Sakurai H, Fujii K, Watanabe H, Tamura H (1995) Biochem Biophys Res Commun 214:1095–1101

    Article  PubMed  CAS  Google Scholar 

  8. Sakurai H, Yasui H, Adachi Y (2003) Expert Opin Investig Drugs 12:1189–1203

    Article  PubMed  CAS  Google Scholar 

  9. Sakurai H, Katoh A, Yoshikawa Y (2006) Bull Chem Soc Jpn 79:1645–1664

    Article  CAS  Google Scholar 

  10. Yoshikawa Y, Ueda E, Miyake H, Sakurai H, Kojima Y (2001) Biochem Biophys Res Commun 281:1190–1193

    Article  PubMed  CAS  Google Scholar 

  11. Adachi Y, Yoshida J, Kodera Y, Kato A, Yoshikawa Y, Kojima Y, Sakurai H (2004) J Biol Inorg Chem 9:885–893

    Article  PubMed  CAS  Google Scholar 

  12. Adachi Y, Yoshikawa Y, Yoshida J, Kodera Y, Katoh A, Kojima Y, Sakurai H (2006) Biomed Res Trace Elem 17:17–24

    CAS  Google Scholar 

  13. Adachi Y, Yoshida J, Kodera Y, Sakurai H (2005) Chem Lett (Jpn) 34:656–657

    Article  CAS  Google Scholar 

  14. Yoshikawa Y, Ueda E, Kojima Y, Sakurai H (2004) Life Sci 75:741–751

    Article  PubMed  CAS  Google Scholar 

  15. Adachi Y, Yoshida J, Kodera Y, Kiss T, Jakusch T, Enyedy EA, Yoshikawa Y, Sakurai H (2006) Biochem Biophys Res Commun 351:165–170

    Article  PubMed  CAS  Google Scholar 

  16. Saltiel AR, Kahn CR (2001) Nature 414:799–806

    Article  PubMed  CAS  Google Scholar 

  17. Taniguchi CM, Emanuelli B, Kahn CR (2006) Nature Rev Mol Cell Biol 7:85–96

    Article  CAS  Google Scholar 

  18. Thong FSL, Dugani CB, Klip A (2005) Physiology 20:271–284

    Article  PubMed  CAS  Google Scholar 

  19. Chang L, Chiang SH, Saltiel AR (2004) Mol Med 10:65–71

    PubMed  CAS  Google Scholar 

  20. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemming BA (1995) Nature 378:785–789

    Article  PubMed  CAS  Google Scholar 

  21. Watson RT, Pessin JE (2006) Trends Biochem Sci 31:215–222

    Article  PubMed  CAS  Google Scholar 

  22. Min J, Okada S, Kanzaki M, Elmendorf JS, Coker KJ, Ceresa BP, Syu LJ, Noda Y, Saltiel AR, Pessin JE (1999) Mol Cell 3:751–760

    Article  PubMed  CAS  Google Scholar 

  23. Watson RT, Kanzaki M, Pessin JE (2004) Endocr Rev 25:177–204

    Article  PubMed  CAS  Google Scholar 

  24. Basuki W, Hiromura M, Adachi Y, Tayama K, Hattori M, Sakurai H (2006) Biochem Biophys Res Commun 349:1163–1170

    Article  PubMed  CAS  Google Scholar 

  25. Langin D (2006) Pharmacol Res 53:482–491

    Article  PubMed  CAS  Google Scholar 

  26. Carmen GY, Víctor SM (2006) Cell Signal 18:401–408

    Article  PubMed  CAS  Google Scholar 

  27. Schweiger M, Schreiber R, Heammerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R (2006) J Biol Chem 281:40236–40241

    Article  PubMed  CAS  Google Scholar 

  28. Degerman E, Smith CJ, Tornqvist H, Vasta V, Belfrage P, Manganiello (1990) Proc Natl Acad Sci 87:533–537

    Article  PubMed  CAS  Google Scholar 

  29. Anthonsen MW, Rönnstrand L, Wernstedt C, Degerman E, Holm C (1998) J Biol Chem 273:215–221

    Article  PubMed  CAS  Google Scholar 

  30. Garton AJ, Yeaman SJ (1990) Eur J Biochem 191:245–250

    Article  PubMed  CAS  Google Scholar 

  31. Greenberg AS, Shen W, Muliro K, Patel S, Souza SC, Toth RA, Kraemer FB (2001) J Biol Chem 276:45456–45461

    Article  PubMed  CAS  Google Scholar 

  32. Kitamura T, Kitamura Y, Kuroda S, Hino Y, Ando M, Kotani K, Konishi H, Matsuzaki H, Kikkawa U, Ogawa W, Kasuga M (1999) Mol Cell Biol 19:6286–6296

    PubMed  CAS  Google Scholar 

  33. Kurioka S, Murakami Y, Nishiki M, Sohmiya M, Koshimura K, Kato Y (2002) Endocr J 49: 459–464

    Article  PubMed  CAS  Google Scholar 

  34. Raz I, Eldor R, Cernea S, Shafrir E (2005) Diabetes Metab Res Rev 21:3–14

    Article  PubMed  CAS  Google Scholar 

  35. Cersosimo E, DeFronzo RA. (2006) Diabetes Metab Res Rev 22:423–436

    Article  PubMed  CAS  Google Scholar 

  36. Hiromura M, Nakayama A, Adachi Y, Doi M, Sakurai H (2007) J Biol Inorg Chem 12:1275–1287

    Article  PubMed  CAS  Google Scholar 

  37. Ishiki M, Randhawa VK, Poon V, Jebailey L, Klip A (2005) J Biol Chem 280:28792–28802

    Article  PubMed  CAS  Google Scholar 

  38. Yoshioka K, Takahashi H, Homma T, Saito M, Oh KB, Nemoto Y, Matsuoka H (1996) Biochim Biophys Acta 1289:5–9

    PubMed  Google Scholar 

  39. Ludbrook J (1998) Clin Exp Pharmacol Physiol 25:1032–1037

    Article  PubMed  CAS  Google Scholar 

  40. Draznin B (2006) Diabetes 55:2392–2397

    Article  PubMed  CAS  Google Scholar 

  41. Ghayour-Mobarhan M, Taylor A, New SA, Lamb DJ, Ferns GA (2005) Ann Clin Biochem 42:364–375

    Article  PubMed  CAS  Google Scholar 

  42. Cohen N, Golik A (2006) Heart Fail Rev 11:19–24

    Article  PubMed  CAS  Google Scholar 

  43. Haase H, Maret W (2005) Biometals 18:333–338

    Article  PubMed  CAS  Google Scholar 

  44. Zhuo S, Dixon JE (1997) Protein Eng 10:1445–1452

    Article  PubMed  CAS  Google Scholar 

  45. Wu W, Wang X, Zhang W, Reed W, Samet JM, Wang YE, Ghio AJ (2003) J Biol Chem 278:28258–28263

    Article  PubMed  CAS  Google Scholar 

  46. Kim S, Jung Y, Kim D, Koh H, Chung J (2000) J Biol Chem 275:25979–25984

    Article  PubMed  CAS  Google Scholar 

  47. Lynch CJ, Patson BJ, Goodman SA, Trapolsi D, Kimball SR (2001) Am J Physiol Endocrinol Metab 281:E25–E34

    PubMed  CAS  Google Scholar 

  48. Eom SJ, Kim EY, Lee JE, Kang HJ, Shim J, Kim SU, Gwag BJ, Choi EJ (2001) Mol Pharm 59:981–986

    CAS  Google Scholar 

  49. Tan XH, Shay NF (2001) J Nutr 131:1414–1420

    Google Scholar 

  50. Basuki W, Hiromura M, Sakurai H (2007) Bull Chem Soc Jpn 80:1605–1610

    Article  CAS  Google Scholar 

  51. Basuki W, Hiromura M, Sakurai H (2007) J Inorg Biochem 101:692–699

    Article  PubMed  CAS  Google Scholar 

  52. Yamada K, Nakata M, Horimoto N, Saito M, Matsuoka H, Inagaki N (2000) J Biol Chem 275:22278–22283

    Article  PubMed  CAS  Google Scholar 

  53. Frayn KN (2002) Diabetologia 45:1201–1210

    Article  PubMed  CAS  Google Scholar 

  54. Boden G, Shulman GI (2002) Eur J Clin Invest 32:14–23

    Article  PubMed  CAS  Google Scholar 

  55. Nisoli E, Carruba MO (2004) Pharmacol Res 50:453–469

    Article  PubMed  CAS  Google Scholar 

  56. Ahmad F, Lindh R, Tang Y, Weston M, Dergerman E, Manganiello VC (2007) Biochem J 404: 257–268

    Article  PubMed  CAS  Google Scholar 

  57. Degerman E, Smith CJ, Tornqvist H, Vasta V, Belfrage P, Manganiello VC (1990) Proc Natl Acad Sci USA 87:533–537

    Article  PubMed  CAS  Google Scholar 

  58. Eriksson H, Ridderstrale M, Degerman E, Ekholm D, Smith CJ, Manganiello VC, Belfrage P, Tornqvist H (1995) Biochim Biophys Acta 1266:101–107

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese Government [Grant-in-Aid for Scientific Research (B). Scientific Research on Priority Areas, and Specially Promoted Research] to H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromu Sakurai.

Additional information

A. Nakayama and M. Hiromura contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, A., Hiromura, M., Adachi, Y. et al. Molecular mechanism of antidiabetic zinc–allixin complexes: regulations of glucose utilization and lipid metabolism. J Biol Inorg Chem 13, 675–684 (2008). https://doi.org/10.1007/s00775-008-0352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0352-0

Keywords

Navigation