Skip to main content
Log in

Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: implications for wood biodegradation

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Brown rot fungi degrade wood, in initial stages, mainly through hydroxyl radicals (•OH) produced by Fenton reactions. These Fenton reactions can be promoted by dihydroxybenzenes (DHBs), which can chelate and reduce Fe(III), increasing the reactivity for different substrates. This mechanism allows the extensive degradation of carbohydrates and the oxidation of lignin during wood biodegradation by brown rot fungi. To understand the enhanced reactivity in these systems, kinetics experiments were carried out, measuring •OH formation by the spin-trapping technique of electron paramagnetic resonance spectroscopy. As models of the fungal DHBs, 1,2-dihydroxybenzene (catechol), 2,3-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid were utilized as well as 1,2-dihydroxy-3,5-benzenedisulfonate as a non-Fe(III)-reducing substance for comparison. Higher amounts and maintained concentrations of •OH were observed in the driven Fenton reactions versus the unmodified Fenton process. A linear correlation between the logarithms of complex stability constants and the •OH production was observed, suggesting participation of such complexes in the radical production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamilton GA, Hanifin JW, Friedman JP (1966) J Am Chem Soc 88:5269–5272

    Article  CAS  Google Scholar 

  2. Kerem Z, Hammel KE (1999) FEBS Lett 446:49–54

    Article  PubMed  CAS  Google Scholar 

  3. Paszczynski A, Crawford R, Funk D, Goodell B (1999) Appl Environ Microb 65:674–679

    CAS  Google Scholar 

  4. Goodell B (2003) In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation. Advances in our changing world. ACS symposium series no 845. American Chemical Society, Washington, pp 97–118

  5. Jensen KA Jr, Houtman CJ, Ryan ZC, Hammel KE (2001) Appl Environ Microb 67:2705–2711

    Article  CAS  Google Scholar 

  6. Liu R, Goodell B, Jellison J, Amirbahman A (2005) Environ Sci Technol 39:175–180

    Article  PubMed  CAS  Google Scholar 

  7. Wang W, Gao PJ (2003) J Biotechnol 101:119–130

    Article  PubMed  Google Scholar 

  8. Goodell B, Nicholas DD, Schult TP (eds) (2003) Wood deterioration and preservation. Advances in our changing world. ACS symposium series no 845. American Chemical Society, Washington, pp 2–7

  9. Hyde SM, Wood PM (1997) Microbiology143:259–266

    Article  CAS  Google Scholar 

  10. Safarzadeh-Amiri A, Bolton JR, Carter SR (1996) J Adv Oxid Technol 1:18–26

    CAS  Google Scholar 

  11. Kaim W, Swederski B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life: an introduction and guide, 1 edn. Wiley, Chichester

    Google Scholar 

  12. Kremer ML (2003) J Phys Chem A 107:1734–1741

    Article  CAS  Google Scholar 

  13. Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Org Geochem 33:111–124

    Article  CAS  Google Scholar 

  14. Xu G, Goodell B (2001) J Biotechnol 87:43–57

    Article  PubMed  CAS  Google Scholar 

  15. Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Free Radic Biol Med 22:861–870

    Article  PubMed  CAS  Google Scholar 

  16. Iwahashi H, Morishita H, Ishii T, Sugata R, Kido R (1989) J Biochem 105:429–434

    PubMed  CAS  Google Scholar 

  17. Kawabata T, Schepkin V, Haramaki N, Phadke RS, Packer L (1996) Biochem Pharmacol 51:1569–1577

    Article  PubMed  CAS  Google Scholar 

  18. Faure M, Lissi E, Torres R, Videla LA (1990) Phytochemistry 29:3773–3775

    Article  CAS  Google Scholar 

  19. Lopes GKB, Schulman HM, Hermes-Lima M (1999) Biochim Biophys Acta 1472:142–152

    PubMed  CAS  Google Scholar 

  20. Zang LY, Cosma G, Gardner H, Castranova V, Vallyathan V (2003) Mol Cell Biochem 247:205–210

    Article  PubMed  Google Scholar 

  21. Raymond KN, Isied SS, Brown LD, Fronczek FR, Nibert JH (1976) J Am Chem Soc 98:1767–1774

    Article  PubMed  CAS  Google Scholar 

  22. Engelmann MD, Bobier RT, Hiatt T, Cheng IF (2003) Biometals 16:519–527

    Article  PubMed  CAS  Google Scholar 

  23. Contreras D, Freer J, Rodriguez J (2006) Int Biodeterior Biodegradation 57:63–68

    Article  CAS  Google Scholar 

  24. Sever MJ, Wilker JJ (2006) Dalton Trans 813–822

  25. Mentasti E, Pelizzeti E, Saini G (1973) J Chem Soc Dalton Trans 23:2690–2614

    Google Scholar 

  26. Avdeef A, Sofen SR, Bregante TL, Raymond KN (1978) J Am Chem Soc 100:5362–5370

    Article  CAS  Google Scholar 

  27. Xu JH, Jordan RB (1988) Inorg Chem 27:1502–1507

    Article  CAS  Google Scholar 

  28. Barreto WJ, Barreto SRG, Moreira I, Kawano Y (2006) Quim Nova 29:1255–1258

    CAS  Google Scholar 

  29. Mentasti E, Pelizzeti E, Saini G (1976) J Inorg Nucl Chem 38:785–788

    Article  CAS  Google Scholar 

  30. Xu JH, Jordan RB (1988) Inorg Chem 27:4563–4566

    Article  CAS  Google Scholar 

  31. Sanchez P, Galvez N, Colacio E, Minones E, Dominguez-Vera JM (2005) Dalton Trans 811–813

  32. Rodriguez J, Parra C, Contreras, Freer J, Baeza J (2001) Water Sci Technol 44:251–256

    PubMed  CAS  Google Scholar 

  33. Qian Y, Goodell B, Felix CC (2002) Chemosphere 48:21–28

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez J, Contreras D, Parra C, Freer J, Baeza J, Duran N (1999) Water Sci Technol 40:351–355

    Article  CAS  Google Scholar 

  35. Oviedo C, Contreras D, Freer J, Rodriguez J (2004) Environ Technol 25:801–807

    Article  PubMed  CAS  Google Scholar 

  36. Goodell B, Qian YH, Jellison J, Richard M (2004) Water Environ Res 76:2703–2707

    PubMed  CAS  Google Scholar 

  37. Rodriguez J, Contreras D, Oviedo C, Freer J, Baeza J (2004) Water Sci Technol 49:81–84

    PubMed  CAS  Google Scholar 

  38. Finkelstein E, Rosen GM, Rauckman EJ (1980) J Am Chem Soc 102:4994–4999

    Article  CAS  Google Scholar 

  39. Reszka KJ, McCormick ML, Buettner GR, Hart CM, Britigan BE (2006) Nitric Oxide Biol Chem 15:133–141

    Article  CAS  Google Scholar 

  40. Yamazaki I, Piette LH (1990) J Biol Chem 265:13589–13594

    PubMed  CAS  Google Scholar 

  41. Madden KP, Taniguchi H (2001) Free Radic Biol Med 30:1374–1380

    Article  PubMed  CAS  Google Scholar 

  42. Platenik J, Stopka P, Vejrazka M, Stipek S (2001) Free Radic Res 34:445–459

    Article  PubMed  CAS  Google Scholar 

  43. Pracht J, Boenigk J, Isenbeck-Schroter M, Keppler F, Scholer HF (2001) Chemosphere 44:613–619

    Article  PubMed  CAS  Google Scholar 

  44. Chen RZ, Pignatello JJ (1997) Environ Sci Technol 31:2399–2406

    Article  CAS  Google Scholar 

  45. Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD, Hammel KE (2006) Environ Microbiol 8:2214–2223

    Article  PubMed  CAS  Google Scholar 

  46. Goodell B, Daniel G, Jellison J, Qian YH (2006) Holzforschung 60:630–636

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Eduardo Lissi for his comments on the results. Financial support for this work was provided by FONDECYT (grant No. 1040619) and DIUC (grant 206.021.024-1.0.) and a CONICYT-DAAD scholarship (D.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Contreras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contreras, D., Rodríguez, J., Freer, J. et al. Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: implications for wood biodegradation. J Biol Inorg Chem 12, 1055–1061 (2007). https://doi.org/10.1007/s00775-007-0274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0274-2

Keywords

Navigation