Skip to main content
Log in

Theoretical study of the reduction of nitric oxide in an A-type flavoprotein

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The mechanism for the reduction of nitric oxide to nitrous oxide and water in an A-type flavoprotein (FprA) in Moorella thermoacetica, which has been proposed to be a scavenging type of nitric oxide reductase, has been investigated using density functional theory (B3LYP). A dinitrosyl complex, [{FeNO}7]2, has previously been proposed to be a key intermediate in the NO reduction catalyzed by FprA. The electrons and protons involved in the reduction were suggested to “super-reduce” the dinitrosyl intermediate to [{FeNO}8]2 or the corresponding diprotonated form, [{FeNO(H)}8]2. In this type of mechanism the electron and/or proton transfers will be a part of the rate-determining step. In the present study, on the other hand, a reaction mechanism is suggested in which N2O can be formed before the protons and electrons enter the catalytic cycle. One of the irons in the diiron center is used to stabilize the formation of a hyponitrite dianion, instead of binding a second NO. Cleaving the N–O bond in the hyponitrite dianion intermediate is the rate-determining step in the proposed reaction mechanism. The barrier of 16.5 kcal mol−1 is in good agreement with the barrier height of the experimental rate-determining step of 14.8 kcal mol−1. The energetics of some intermediates in the “super-reduction” mechanism and the mechanism proceeding via a hyponitrite dianion are compared, favoring the latter. It is also discussed how to experimentally discriminate between the two mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zumft WG (1997) Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

  2. Watmough NJ, Butland G, Cheesman MR, Moir JWB, Richardson DJ, Spiro S (1999) Biochim Biophys Acta 1411:456–474

    Article  PubMed  CAS  Google Scholar 

  3. Ischiropoulos H (1998) Arch Biochem Biophys 356:1–11

    Article  PubMed  CAS  Google Scholar 

  4. Radi R, Beckman JS, Bush KM, Freeman BA (1991) J Biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  5. King PA, Anderson VE, Edwards JO, Gustafson G, Plumb RC, Suggs JW (1992) J Am Chem Soc 114:5430–5432

    Article  CAS  Google Scholar 

  6. Bredt DS, Snyder SH (1994) Annu Rev Biochem 63:175–195

    Article  PubMed  CAS  Google Scholar 

  7. Silaghi-Dumitrescu R, Kurtz DM Jr, Ljungdahl LG, Lanzilotta WN (2005) Biochemistry 44:6492–6501

    Article  PubMed  CAS  Google Scholar 

  8. Silaghi-Dumitrescu R, Ng KY, Viswanathan R, Kurtz DM Jr (2005) Biochemistry 44:3572–3579

    Article  PubMed  CAS  Google Scholar 

  9. Gomes CM, Giuffré A, Forte E, Vicente JB, Saraiva LM, Brunori M, Teixeira M (2002) J Biol Chem 277:25273–25276

    Article  PubMed  CAS  Google Scholar 

  10. Gardner AM, Helmick RA, Gardner PR (2002) J Biol Chem 277:8172–8177

    Article  PubMed  CAS  Google Scholar 

  11. Rodrigues R, Vicente JB, Félix R, Oliveira S, Teixeira M, Rodrigues-Pousada C (2006) J Bacteriol 188:2745–2751

    Article  PubMed  CAS  Google Scholar 

  12. Silaghi-Dumitrescu R, Coulter ED, Das A, Ljungdahl LG, Jameson GNL, Huynh BH, Kurtz DM Jr (2003) Biochemistry 42:2806–2815

    Article  PubMed  CAS  Google Scholar 

  13. Haskin CJ, Ravi N, Lynch JB, Münck E, Que L Jr (1995) Biochemistry 34:11090–11098

    Article  PubMed  CAS  Google Scholar 

  14. Coufal DE, Tavares P, Pereira AS, Hyunh BH, Lippard SJ (1999) Biochemistry 38:4504–4513

    Article  PubMed  CAS  Google Scholar 

  15. Daiber A, Shoun H, Ullrich V (2005) J Inorg Biochem 99:185–193

    Article  PubMed  CAS  Google Scholar 

  16. Vincent MA, Hillier IH, Ge J (2005) Chem Phys Lett 407:333–336

    Article  CAS  Google Scholar 

  17. Silaghi-Dumitrescu R (2003) Eur J Inorg Chem 2003:1048–1052

    Article  Google Scholar 

  18. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  20. Frisch MJ et al (2003) Gaussian 03, revision B.03. Gaussian, Pittsburgh

  21. Schrodinger (2003) Jaguar 5.5. Schrodinger, Portland

  22. Blomberg LM, Blomberg MRA, Siegbahn PEM (2004) J Biol Inorg Chem 9:923–935

    Article  PubMed  CAS  Google Scholar 

  23. Blomberg LM, Blomberg MRA, Siegbahn PEM, van der Donk WA, Tsai A-L (2003) J Phys Chem B 107:3297–3308

    Article  CAS  Google Scholar 

  24. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard WA III, Honig B (1994) J Am Chem Soc 116:11875–11882

    Article  CAS  Google Scholar 

  25. Blomberg MRA, Siegbahn PEM, Babcock GT (1998) J Am Chem Soc 120:8812–8824

    Article  CAS  Google Scholar 

  26. Curtiss LA, Raghavachari K, Redfern RC, Pople JA (2000) J Chem Phys 112:7374–7383

    Article  CAS  Google Scholar 

  27. Siegbahn PEM, Blomberg MRA (1999) Annu Rev Phys Chem 50:221–249

    Article  PubMed  CAS  Google Scholar 

  28. Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421–437

    Article  PubMed  CAS  Google Scholar 

  29. Blomberg MRA, Siegbahn PEM (2001) J Phys Chem B 105:9375–9386

    Article  CAS  Google Scholar 

  30. Silaghi-Dumitrescu R, Silaghi-Dumitrescu I (2006) J Inorg Biochem 100:161–166

    Article  PubMed  CAS  Google Scholar 

  31. Blomberg LM, Blomberg MRA, Siegbahn PEM (2005) J Inorg Biochem 99:949–958

    Article  PubMed  CAS  Google Scholar 

  32. Schenk G, Pau MYM, Solomon EI (2004) J Am Chem Soc 126:505–515

    Article  PubMed  CAS  Google Scholar 

  33. Kurtz DM Jr (1990) Chem Rev 90:585–606

    Article  CAS  Google Scholar 

  34. Gomes CM, Vicente JB, Wasserfallen A, Teixeira M (2000) Biochemistry 39:16230–16237

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Pavlosky MA, Brown CA, Westre TE, Hedman B, Hodgson KO, Solomon EI (1992) J Am Chem Soc 114:9189–9191

    Article  CAS  Google Scholar 

  36. Brown CA, Pavlosky MA, Westre TE, Zhang Y, Hedman B, Hodgson KO, Solomon EI (1995) J Am Chem Soc 117:715–732

    Article  CAS  Google Scholar 

  37. Galpin JR, Veldink GA, Vliegenthart JFG, Boldingh J (1978) Biochim Biophys Acta 536:356–362

    PubMed  CAS  Google Scholar 

  38. Feig AL, Bautista MT, Lippard SL (1996) Inorg Chem 35:6892–6898

    Article  PubMed  CAS  Google Scholar 

  39. Nocek JM, Kurtz DM Jr, Sage JT, Xia Y-M, Debrunner P, Shiemke AK, Sanders-Loehr J, Loehr TM (1988) Biochemistry 27:1014–1024

    Article  PubMed  CAS  Google Scholar 

  40. Nelson MJ (1987) J Biol Chem 262:12137–12412

    PubMed  CAS  Google Scholar 

  41. Shafirovich V, Lymar SV (2002) Proc Natl Acad Sci USA 99:7340–7345

    Article  PubMed  CAS  Google Scholar 

  42. Bassan A, Blomberg MRA, Siegbahn PEM (2003) Chem Eur J 9:4055–4067

    Article  CAS  Google Scholar 

  43. Bassan A, Blomberg MRA, Siegbahn PEM (2003) Chem Eur J 7:106–115

    Article  Google Scholar 

  44. Cheesman MR, Zumft WG, Thomson A (1998) J Biochem 37:3994–4000

    Article  CAS  Google Scholar 

  45. Hendriks J, Warne A, Gohlke U, Halita T, Ludovici C, Lübben M, Saraste M (1998) Biochemistry 37:13102–13109

    Article  PubMed  CAS  Google Scholar 

  46. Blomberg LM, Blomberg MRA, Siegbahn PEM (2006) Biochim Biophys Acta 1757:240–252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mattias Blomberg.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomberg, L.M., Blomberg, M.R.A. & Siegbahn, P.E.M. Theoretical study of the reduction of nitric oxide in an A-type flavoprotein. J Biol Inorg Chem 12, 79–89 (2007). https://doi.org/10.1007/s00775-006-0166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0166-x

Keywords

Navigation