Skip to main content
Log in

An examination of the binding behavior of histidine-containing peptides with immobilized metal complexes derived from the macrocyclic ligand, 1,4,7-triazacyclononane

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, two different experimental approaches have been employed to examine the binding behavior of histidine-containing peptides with metal ion complexes derived from the macrocyclic ligand 1,4,7-triazacyclononane (tacn). Firstly, a molecular modeling approach has been employed to derive the strain energies for test peptide sequences that have a predicted propensity to readily adopt an α-helical conformation. To this end, binuclear metal complexes were examined with peptides containing two histidine residues in different locations in a pair of peptides of the same composition but different sequence. These modeling results indicate that there are no energetic constraints for two-point binding to occur with dicopper(II) binuclear complexes when two histidine residues are appropriately placed in an α-helical conformation. Secondly, binding experiments were carried out to establish the effect of one or more histidine residues within a peptide sequence on the affinity of a peptide for these Cu(II)–tacn derived binuclear complexes when immobilized onto a chromatographic support material. The results confirm that for all chelating systems, higher affinity is achieved as the histidine number in the peptide structure increases, although the relative location of the histidine residues in these small peptides did not introduce a significant constraint to the conformation on interacting with the immobilized Cu(II) binuclear complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ac2O:

Acetic anhydride

AMBER:

Assisted model building using energy refinement

DIEA:

Diisopropylethylamine

DMF:

N,N-Dimethylformamide

Et3N:

Triethylamine

Fmoc:

9-Fluorenylmethoxycarbonyl

HBTU:

o-Benzotriazole-N,N,N′,N′-tetramethyluronium hexafluorophosphate

HOBT:

1-Hydroxybenzotriazole

HPLC:

High-performance liquid chromatography

IMAC:

Immobilized metal affinity chromatography

Lbut :

1,4-Bis(1,4,7-triazacyclonon-1-yl)butane

Lmx :

1,3-Bis(1,4,7-triazacyclonon-1-ylmethyl)benzene

Lox :

1,2-Bis(1,4,7-triazacyclonon-1-ylmethyl)benzene

Lpx :

1,4-Bis(1,4,7-triazacyclonon-1-ylmethyl)benzene

PIP:

Piperidine

tacn:

1,4,7-Triazacyclononane

TFA:

Trifluoroacetic acid

TNBSA:

1,3,5-Trinitrobenzenesulfonic acid

References

  1. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Nature 258(5536):598–599

    Article  PubMed  CAS  Google Scholar 

  2. Porath J (1992) Protein Expr Purif 3(4):263–281

    Article  PubMed  CAS  Google Scholar 

  3. Hemdan ES, Zhao YJ, Sulkowski E, Porath J (1989) Proc Natl Acad Sci USA 86(6):1811–1815

    Article  PubMed  CAS  Google Scholar 

  4. Chakrabarti P (1990) Protein Eng 4(1):57–63

    Article  PubMed  CAS  Google Scholar 

  5. Ding Y, Jiang M, Jiang W, Su Y, Zhou H, Hu X, Zhang Z (2005) Protein Expr Purif 42(1):137–145

    Article  PubMed  CAS  Google Scholar 

  6. Le Grice SF, Gruninger-Leitch F (1990) Eur J Biochem 187(2):307–314

    Article  PubMed  CAS  Google Scholar 

  7. Crowe J, Masone BS, Ribbe J (1995) Mol Biotechnol 4(3):247–258

    PubMed  CAS  Google Scholar 

  8. Jiang W, Hearn MT (1996) Anal Biochem 242(1):45–54

    Article  PubMed  CAS  Google Scholar 

  9. Kronina VV, Wirth HJ, Hearn MT (1999) J Chromatogr A 852(1):261–272

    Article  PubMed  CAS  Google Scholar 

  10. Wirth HJ, Unger KK, Hearn MT (1993) Anal Biochem 208(1):16–25

    Article  PubMed  CAS  Google Scholar 

  11. Jiang W, Graham B, Spiccia L, Hearn MT (1998) Anal Biochem 255(1):47–58

    Article  PubMed  CAS  Google Scholar 

  12. Chaouk H, Hearn MT (1999) J Biochem Biophys Methods 39(3):161–177

    Article  PubMed  CAS  Google Scholar 

  13. Zachariou M, Traverso I, Hearn MT (1993) J Chromatogr 646(1):107–120

    Article  PubMed  CAS  Google Scholar 

  14. Karlin S, Zhu Z-Y (1997) Proc Natl Acad Sci USA 94:14231–14236

    Article  PubMed  CAS  Google Scholar 

  15. Karlin S, Zhu Z-Y, Karlin K (1997) Proc Natl Acad Sci USA 94:14225–14230

    Article  PubMed  CAS  Google Scholar 

  16. Arnold FH, Haymore BL (1991) Science 252(5014):1796–1797

    Article  PubMed  CAS  Google Scholar 

  17. Suh SS, Haymore BL, Arnold FH (1991) Protein Eng 4(3):301–305

    Article  PubMed  CAS  Google Scholar 

  18. Todd RJ, Van Dam ME, Casimiro D, Haymore BL, Arnold FH (1991) Proteins 10(2):156–161

    Article  PubMed  CAS  Google Scholar 

  19. Lu Y, Casimiro DR, Bren KL, Richards JH, Gray HB (1993) Proc Natl Acad Sci USA 90(24):11456–11459

    Article  PubMed  CAS  Google Scholar 

  20. Patwardhan AV, Goud GN, Koepsel RR, Ataai MM (1997) J Chromatogr A 787(1–2):91–100

    Article  PubMed  CAS  Google Scholar 

  21. Pasquinelli RS, Shepherd RE, Koepsel RR, Zhao A, Ataai MM (2000) Biotechnol Prog 16(1):86–91

    Article  PubMed  CAS  Google Scholar 

  22. Kelso MJ, Beyer RL, Hoang HN, Lakdawala AS, Snyder JP, Oliver WV, Robertson TA, Appleton TG, Fairlie DP (2004) J Am Chem Soc 126(15):4828–4842

    Article  PubMed  CAS  Google Scholar 

  23. Ward MS, Ataai M, Koepsel RR, Shepherd RE (2001) Biotechnol Prog 17(4):712–719

    Article  PubMed  CAS  Google Scholar 

  24. Chen Y, Pasquinelli R, Ataai M, Koepsel RR, Kortes RA, Shepherd RE (2000) Inorg Chem 39(6):1180–1186

    Article  PubMed  CAS  Google Scholar 

  25. Ojida A, Inoue MA, Mito-Oka Y, Hamachi I (2003) J Am Chem Soc 125(34):10184–10185

    Article  PubMed  CAS  Google Scholar 

  26. Mallik S, Johnson RD, Arnold FH (1993) J Am Chem Soc 115:2518–2520

    Article  CAS  Google Scholar 

  27. Mallik S, Plunkett SD, Dhal PK, Johnson RD, Pack D, Shnek D, Arnold FH (1994) New J Chem 18:299–304

    CAS  Google Scholar 

  28. Fazal MA, Roy BC, Sun S, Mallik S, Rodgers KR (2001) J Am Chem Soc 123(26):6283–6290

    Article  PubMed  CAS  Google Scholar 

  29. Sun S, Fazal MA, Roy BC, Chandra B, Mallik S (2002) Inorg Chem 41(6):1584–1590

    Article  PubMed  CAS  Google Scholar 

  30. Sun S, Abul Fazal M, Roy BC, Mallik S (2000) Org Lett 2(7):911–914

    Article  PubMed  CAS  Google Scholar 

  31. Graham B, Fallon GD, Hearn MTW, Hockless DCR, Lazarev G, Spiccia L (1997) Inorg Chem 36:6366–6373

    Article  CAS  Google Scholar 

  32. Bernhardt PV, Comba P, Hambley TW, Stebler S (1992) Inorg Chem 31:2638–2644

    Article  CAS  Google Scholar 

  33. Comba P (1993) Coord Chem Rev 123:1–48

    Article  CAS  Google Scholar 

  34. Comba P, Hambley TW, Okon N (1995) MOMEC: a molecular mechanics package for coordination compounds. Altenhof and Schmitz, Dortmund

    Google Scholar 

  35. Creighton TE (1984) Proteins: structures and molecular properties. Freeman, New York

    Google Scholar 

  36. Weiner P, Kollman P (1981) J Comput Chem 2:287–303

    Article  CAS  Google Scholar 

  37. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  38. Hambley TW, Hawkins CJ, Palmer JA, Snow MR (1981) Aust J Chem 34:45–56

    Article  CAS  Google Scholar 

  39. Orpen AG, Brammer L, Allen FH, Kennard O, Watson DG, Taylor R (1989) J Chem Soc Dalton Trans S1–S83

  40. Glusker JP (1991) Adv Protein Chem 42:1–76

    Article  PubMed  CAS  Google Scholar 

  41. Marqusee S, Baldwin RL (1987) Proc Natl Acad Sci USA 84(24):8898–8902

    Article  PubMed  CAS  Google Scholar 

  42. Scholtz JM, Baldwin RL (1992) Annu Rev Biophys Biomol Struct 21:95–118

    Article  PubMed  CAS  Google Scholar 

  43. Benson DR, Hart BR, Zhu X, Doughty MB (1995) J Am Chem Soc 117:8502–8510

    Article  CAS  Google Scholar 

  44. Field GB, Noble RL (1990) Int J Peptide Protein Res 35:161–214

    Article  Google Scholar 

Download references

Acknowledgements

These investigations were supported by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leone Spiccia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, B., Comba, P., Hearn, M.T.W. et al. An examination of the binding behavior of histidine-containing peptides with immobilized metal complexes derived from the macrocyclic ligand, 1,4,7-triazacyclononane. J Biol Inorg Chem 12, 11–21 (2007). https://doi.org/10.1007/s00775-006-0160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0160-3

Keywords

Navigation