Skip to main content

Advertisement

Log in

Structural and thermodynamical properties of CuII amyloid-β16/28 complexes associated with Alzheimer’s disease

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The aggregation of the peptide amyloid-β (Aβ) to form amyloid plaques is a key event in Alzheimer’s disease. It has been shown that CuII can bind to soluble Aβ and influence its aggregation properties. Three histidines and the N-terminal amine have been proposed to be involved in its coordination. Here, for the first time, we show isothermal titration calorimetry (ITC) measurements of the CuII binding to Aβ16 and Aβ28, models of the soluble Aβ. Moreover, different spectroscopic methods were applied. The studies revealed new insights into these CuII–Aβ complexes: (1) ITC showed two CuII binding sites, with an apparent Kd of 10−7 and 10−5 M, respectively; (2) the high-affinity site has a smaller enthalpic contribution but a larger entropic contribution than the low-affinity binding site; (3) azide did not bind to CuII in the higher-affinity binding site, suggesting the absence of a weak, labile ligand; (4) azide could bind to the CuII in the low-affinity binding site in Aβ28 but not in Aβ16; (5) 1H-NMR suggests that the carboxylate of aspartic acid in position 1 is involved in the ligation to CuII in the high-affinity binding site; (6) the pKa of 11.3 of tyrosine in position 10 was not influenced by the binding of 2 equivalents of CuII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid-β

Aβ16:

Amyloid-β1−16

Aβ28:

Amyloid-β1-28

AD:

Alzheimer’s disease

APP:

Amyloid-precursor protein

EPR:

Electron paramagnetic resonance

HEPES:

2-(4-(2-Hydroxyethyl)-1-piperazinyl)ethanesulfonic acid

ITC:

Isothermal titration calorimetry

NOESY:

Nuclear Overhauser enhancement spectroscopy

TOCSY:

Total correlation spectroscopy

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Glenner GG, Wong CW (1984) Biochem Biophys Res Commun 120:885–890

    CAS  PubMed  Google Scholar 

  2. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B (1987) Nature 325:733–736

    CAS  PubMed  Google Scholar 

  3. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfey C, Mellon A, Ostaszewsky BL, Lieberburg I, Koo EH, Schnek D, Teplow DB, Selkoe DJ (1992) Nature 359:322–325

    CAS  PubMed  Google Scholar 

  4. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance M (1993) Science 261:921–923

    CAS  PubMed  Google Scholar 

  5. Hardy J, Selkoe DJ (2002) Science 297:353–356

    CAS  PubMed  Google Scholar 

  6. Bush AI, Pettingell WH, Multhaup G, Paradis MD, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Science 265:1464–1467

    CAS  PubMed  Google Scholar 

  7. Multhaup G, Masters CL (1999) Met Ions Biol Syst 36:365–388

    CAS  PubMed  Google Scholar 

  8. Selkoe DJ (2001) Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  9. Bush AI (2003) Trends Neurosci 26:207–214

    CAS  PubMed  Google Scholar 

  10. Suh YH, Checler F (2002) Pharmacol Rev 54:469–525

    CAS  PubMed  Google Scholar 

  11. Morgan C, Colombres M, Nunez MT, Inestrosa NC (2004) Prog Neurobiol 74:323–349

    CAS  PubMed  Google Scholar 

  12. Antzutkin ON (2004) Magn Reson Chem 42:231–246

    CAS  PubMed  Google Scholar 

  13. Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI (1999) J Biol Chem 274:23223–23228

    CAS  PubMed  Google Scholar 

  14. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y-S, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Neuron 30:665–676

    CAS  PubMed  Google Scholar 

  15. Huang X, Cuajungco MP, Atwood CG, Hartshorn MA, Tyndall JDA, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999) J Biol Chem 274:37111–37116

    CAS  PubMed  Google Scholar 

  16. Phinney AL, Drisaldi B, Schmidt SD, Lugowski S, Coronado V, Liang Y, Horne P, Yang J, Sekoulidis J, Coomaraswamy J, Chishti MA, Cox DW, Mathews PM, Nixon RA, Carlson GA, George-Hyslop PS, Westaway D (2003) Proc Natl Acad Sci USA 100:14193–14198

    CAS  PubMed  Google Scholar 

  17. Bayer TA, Schafer S, Simons A, Kemmling A, Kamer T, Tepest R, Eckert A, Schussel K, Eikenberg O, Sturchler-Pierrat C, Abramowski D, Staufenbiel M, Multhaup G (2003) Proc Natl Acad Sci USA 100:14187–14192

    CAS  PubMed  Google Scholar 

  18. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NME, Romano DM, Hartshorn MA, Tanzi RE, Bush AI (1998) J Biol Chem 273:12817–12826

    CAS  PubMed  Google Scholar 

  19. Zou J, Kajita K, Sugimoto N (2001) Angew Chem Int Ed Engl 40:2274–2277

    CAS  PubMed  Google Scholar 

  20. Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) J Biol Chem 276:20466–20473

    CAS  PubMed  Google Scholar 

  21. Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Biochemistry 39:7024–7031

    CAS  PubMed  Google Scholar 

  22. Syme CD, Nadal RC, Rigby SEJ, Viles JH (2004) J Biol Chem 279:18169–18177

    CAS  PubMed  Google Scholar 

  23. Kowalik-Jankowska T, Ruta M, Wisniewska K, Lankiewicz L (2003) J Inorg Biochem 95:270–282

    CAS  PubMed  Google Scholar 

  24. Schoneich C, Williams TD (2002) Chem Res Toxicol 15:717–722

    PubMed  Google Scholar 

  25. Kowalik-Jankowska T, Ruta M, Wisniewska K, Lankiewicz L (2004) J Inorg. Biochem 98:940–950

    CAS  PubMed  Google Scholar 

  26. Karr JW, Kaupp LJ, Szalai VA (2004) J Am Chem Soc 126:13534–13538

    CAS  PubMed  Google Scholar 

  27. Karr JW, Akintoye H, Kaupp LJ, Szalai VA (2005) Biochemistry 44:5478–5487

    CAS  PubMed  Google Scholar 

  28. Tickler AK, Smith DG, Ciccotosto GD, Tew DJ, Curtain CC, Carrington D, Masters CL, Bush AI, Cherny RA, Cappai R, Wade JD, Barnham KJ (2005) J Biol Chem 280:13355–13363

    CAS  PubMed  Google Scholar 

  29. Garzon-Rodriguez W, Yatsimirsky AK, Glabe CG (1999) Bioorg Med Chem Lett 9:2243–2248

    CAS  PubMed  Google Scholar 

  30. Atwood CS, Scarpa RC, Huang X, Moir RD, WD Jones, Fairlie DP, Tanzi RE, Bush AI (2000) J Neurochem 75:1219–1233

    CAS  PubMed  Google Scholar 

  31. Zhang Y, Wilcox DE (2002) J Biol Inorg Chem 7:327–337

    CAS  PubMed  Google Scholar 

  32. Blasie CA, Berg JM (2002) Biochemistry 41:15068–15073

    CAS  PubMed  Google Scholar 

  33. Blasie CA, Berg JM (2003) J Am Chem Soc 125:6866–6867

    CAS  PubMed  Google Scholar 

  34. Martell AE, Smith RM, Motekaitis RJ (2004) Database 46: NIST critically selected stability constants of metal complexes, version 8.0 For Windows

  35. Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691–708

    CAS  PubMed  Google Scholar 

  36. Sigel H, Martin BR (1982) Chem Rev 82:385–426

    CAS  Google Scholar 

  37. Sadler PJ, Tucker A, Viles JH (1994) Eur J Biochem 220:193–200

    CAS  PubMed  Google Scholar 

  38. Jones CE, Klewpatinond M, Abdelraheim SR, Brown DR, Viles JH (2005) J Mol Biol 346:1393–1407

    CAS  PubMed  Google Scholar 

  39. Garnett AP, Jones CE, Viles JH (2006) Dalton Trans 509–518

  40. Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mavros C, Beyreuther K, Carrington D, Masters CL, Cherny RA, Cappai R, Bush AI (2004) FASEB J 18:1427–1429

    CAS  PubMed  Google Scholar 

  41. Jazdzewski BA, Holland PL, Pink M, Young VG Jr, Spencer DJ, Tolman WB (2001) Inorg Chem 40:6097–6107

    CAS  PubMed  Google Scholar 

  42. Fee JA, Gaber BP (1972) J Biol Chem 247:60–65

    CAS  PubMed  Google Scholar 

  43. Mekmouche Y, Coppel Y, Hochgräfe K, Guilloreau L, Talmard C, Mazarguil H, Faller P (2005) ChemBioChem 6:1663–1671

    CAS  PubMed  Google Scholar 

  44. Zirah S, Kozin SA, Mazur AK, Blond A, Cheminant M, Segalas-Milazzo I, Debey P, Rebuffat S. (2006) J Biol Chem 281:2151–2161

    CAS  PubMed  Google Scholar 

  45. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) J Neurol Sci 158:47–52

    CAS  PubMed  Google Scholar 

  46. Huang X, Atwood CG, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999) Biochemistry 38:7609–7616

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Mari (LCC Toulouse) for EPR measurements, the research groups of B. Meunier (LCC Toulouse) and D. Fournier (IPBS, Toulouse) for access to their equipment, and P. Dorlet (ICMMO, Orsay) and C. Hureau (CEA, Saclay) for helpful discussions. The thesis of L.G. was supported by the European Social Founds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Faller.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guilloreau, L., Damian, L., Coppel, Y. et al. Structural and thermodynamical properties of CuII amyloid-β16/28 complexes associated with Alzheimer’s disease. J Biol Inorg Chem 11, 1024–1038 (2006). https://doi.org/10.1007/s00775-006-0154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0154-1

Keywords

Navigation