Skip to main content
Log in

The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The aminopeptidase from Aeromonas proteolytica (AAP) contains two zinc ions in the active site and catalyzes the degradation of peptides. Herein we report the crystal structures of AAP at 0.95-Å resolution at neutral pH and at 1.24-Å resolution at low pH. The combination of these structures allowed the precise modeling of atomic positions, the identification of the metal bridging oxygen species, and insight into the physical properties of the metal ions. On the basis of these structures, a new putative catalytic mechanism is proposed for AAP that is likely relevant to all binuclear metalloproteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAP:

Aminopeptidase from Aeromonas proteolytica

BuBA:

1-Butaneboronic acid

CSD:

Cambridge Structural Database

ESD:

Estimated standard deviation

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

LPA:

l-Leucinephosphonic acid

rms:

Root mean square

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Sträter N, Lipscomb WN, Klabunde T, Krebs B (1996) Angew Chem Int Ed Engl 35:2024

    Article  Google Scholar 

  2. Wilcox D (1996) Binuclear metallohydrolases. Chem Rev 96:2435–2458

    Article  PubMed  CAS  Google Scholar 

  3. Lipscomb W, Sträter N (1996) Chem Rev 96:2375–2434

    Article  PubMed  CAS  Google Scholar 

  4. Dismukes G (1996) Chem Rev 96:2909–2926

    Article  PubMed  CAS  Google Scholar 

  5. Prescott J, Wilkes S (1976) Methods Enzymol 45:530–543

    PubMed  CAS  Google Scholar 

  6. Stamper C, Bennett B, Edwards T, Holz R, Ringe D, Petsko G (2001) Biochemistry 40:7035–7046

    Article  PubMed  CAS  Google Scholar 

  7. Bzymek KP, Holz RC (2004) J Biol Chem 279:31018–31025

    Article  PubMed  CAS  Google Scholar 

  8. Desmarais WT, Bienvenue DL, Bzymek KP, Holz RC, Petsko GA, Ringe D (2002) Structure 8:1063–1072

    Article  Google Scholar 

  9. Harding MM (1999) Acta Crystallogr D 55:1432–1443

    Article  PubMed  CAS  Google Scholar 

  10. Diaz N, Suarez D, Merz KM Jr (2000) J Am Chem Soc 122:4197–4208

    Article  CAS  Google Scholar 

  11. Schalk C, Remy J, Chevrier B, Moras D, Tarnus C (1992) Arch Biochem Biophys 294:91–97

    Article  PubMed  CAS  Google Scholar 

  12. Chevrier B, Schalk C, D’Orchymont H, Rondeau J-M, Moras D, Tarnus C (1994) Structure 2:283–291

    Article  PubMed  CAS  Google Scholar 

  13. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    CAS  Google Scholar 

  14. Brunger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D 54:905–921

    Article  PubMed  CAS  Google Scholar 

  15. Sheldrick G, Schneider T (1997) Methods Enzymol 277:319–343

    Article  PubMed  CAS  Google Scholar 

  16. Lamzin VS, Wilson KS (1993) Acta Crystallogr D 49:129–147

    Article  PubMed  CAS  Google Scholar 

  17. Holz RC (2002) Coord Chem Rev 232:5–26

    Article  CAS  Google Scholar 

  18. Barrow GM (1981) Physical chemistry for the life sciences, 2nd edn. McGraw-Hill, New York, p 432

    Google Scholar 

  19. Christianson DW, Alexander SA (1989) J Am Chem Soc 111:6412–6419

    Article  CAS  Google Scholar 

  20. Baker JO, Prescott JM (1983) Biochemistry 22:5322–5331

    Article  CAS  Google Scholar 

  21. De Paola CC, Bennett B, Holz RC, Ringe D, Petsko GA (1999) Biochemistry 38:9048–9053

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CHE-0549221 to R.C.H.), by the National Institutes of Health (GM26788 to G.A.P. and D.R.), and, in part, by the Macromolecular Training Grant from the National Institutes of Health (W.D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory A. Petsko, Dagmar Ringe or Richard C. Holz.

Additional information

The coordinates for the 0.95-Å resolution structure and the 1.24-Å structure at pH 4.7 were deposited in the RCSB Protein Data Bank and have PDB ID numbers of 1RTQ and 2DEA, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desmarais, W., Bienvenue, D.L., Bzymek, K.P. et al. The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica . J Biol Inorg Chem 11, 398–408 (2006). https://doi.org/10.1007/s00775-006-0093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0093-x

Keywords

Navigation