Skip to main content
Log in

Computational studies on imidazole heme conformations

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory computations of heme with ionized propionic acid groups, axially coordinated with two imidazoles, were performed for different mutual orientations of the imidazole planes. Environmental influences from water or protein were considered with a continuum dielectric medium by solving the Poisson equation. In vacuum, optimized geometries yielded imidazole–heme conformations where the NH groups of imidazoles are oriented toward the heme propionic groups in agreement with data from crystal structures of heme proteins. Conformational free-energy dependencies of the mutual orientation of axially ligated imidazoles calculated in protein (ε=10) and water (ε=80) environments confirmed the vacuum results, albeit the energy difference between the preferred and the 180° opposite orientations of the imidazole ligand decreased from 3.84 kcal/mol in vacuum to 2.35 and 2.40 kcal/mol in protein and water, respectively. Two main factors determine the imidazole orientation: (1) the direct intramolecular electrostatic interactions of propionic groups with the polar NH groups of imidazole and (2) the electrostatic interaction of the total dipole moment of the imidazole–heme complex with the reaction field. In vacuum, only the first type of interaction is present, while in a dielectric medium the latter effect becomes competitive at high dielectric constant, resulting in a decrease of the orientational preference. Interestingly, the orientational preference of the imidazole axially ligated to heme becomes even more pronounced, if the negatively charged propionates are neutralized by counter charges that mimic salt bridges or protonation of the propionates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DFT:

Density functional theory

ESP:

Electrostatic potential

PDB:

Protein Data Bank

RESP:

Restraint electrostatic potential

vdW:

van der Waals

References

  1. Bytheway I, Hall MB (1994) Chem Rev 94:639–658

    Google Scholar 

  2. Vangberg A, Ghosh A (1999) J Am Chem Soc 121:12154–12160

    Google Scholar 

  3. Ghosh A, Bocian DF (1996) J Phys Chem 100:6363–6367

    Google Scholar 

  4. Jewsbury P, Yamamoto S, Minato T, Saito M, Kitagawa T (1994) J Am Chem Soc 116:11586–11587

    Google Scholar 

  5. Harris D, Loew G, Waskell L (1998) J Am Chem Soc 120:4308–4318

    Google Scholar 

  6. Rovira C, Kunc K, Hutter J, Ballone P, Parinello M (1997) J Phys Chem 101:8914–8925

    Google Scholar 

  7. Rovira C, Parinello M (1999) Chem Eur J 5:250–263

    Google Scholar 

  8. Popovic DM, Zarić SD, Rabenstein B, Knapp E (2001) J Am Chem Soc 123:6040–6053

    Google Scholar 

  9. Smith DMA, Dupuis M, Vorpagel ER, Straatsma TP (2003) J Am Chem Soc 125:2711–2717

    Google Scholar 

  10. Iakovleva O, Reiner M, Rau H, Haehnel W, Parak F (2002) Phys Chem Chem Phys 4:655–660

    Google Scholar 

  11. Walker FA (1999) Coord Chem Rev 185–186:471–534

    Google Scholar 

  12. Safo MK, Walker FA, Raitsimring AM, Walters WP, Dolota DP, Debrunner PG, Scheidt WR (1994) J Am Chem Soc 116:7760–7770

    Google Scholar 

  13. Nakamura M, Ikeue T, Neya N, Fanasaki N, Nakamura N (1996) Inorg Chem 35:3731–3732

    Google Scholar 

  14. Nakamura M, Ikeue T, Ikezaki A, Ohgo Y, Fujii H (1999) Inorg Chem 38:3857–3863

    Google Scholar 

  15. Wiesemann F, Wonnemann R, Krebs B, Keutel H, Jager E (1994) Angew Chem Int Ed Engl 33:1363–1367

    Google Scholar 

  16. Wolowiec S, Latos-Gra6zynski L, Toronto D, Marchon JC (1998) Inorg Chem 37:724–732

    Google Scholar 

  17. Pilard MA, Guillemot M, Toupet L, Jordanov J, Simonneaux G (1997) Inorg Chem 36:6307–6314

    Google Scholar 

  18. Walker FA, Nasri H, Turowska-Tyrk I, Mohanrao K, Watson CT, Shokhirev NV, Debrunner PG, Scheidt WR (1996) J Am Chem Soc 118:12109–12118

    Google Scholar 

  19. Shokhirev NV, Walker FA (1995) J Phys Chem 99:17795–17804

    Google Scholar 

  20. Raitsimring AM, Walker FA (1998) J Am Chem Soc 120:991–1002

    Google Scholar 

  21. Shokhirev NV, Walker FA (1998) J Am Chem Soc 120:981–990

    Google Scholar 

  22. Nesset MJM, Shokhirev NV, Enemark PD, Jacobson SE, Walker FA (1996) Inorg Chem 35:5188–5200

    Google Scholar 

  23. Nasri H, Ellison MK, Chen S, Huynh BH, Scheidt WR (1997) J Am Chem Soc 119:6374–6383

    Google Scholar 

  24. Grodzicki M, Flint H, Winkler H, Walker FA, Trautwein A (1997) J Phys Chem 101:4202–4207

    Google Scholar 

  25. Walker FA, Huynh BH, Scheidt WR, Osvath S (1986) J Am Chem Soc 108:5288–5297

    Google Scholar 

  26. Menyhard DK, Keseru GM (1998) J Am Chem Soc 120:7991–7992

    Google Scholar 

  27. Zarić SD, Popović DM, Knapp EW (2001) Biochemistry 40:7914–7928

    Google Scholar 

  28. Munro OQ, Serth-Guzzo JA, Turkovska-Tyrk I, Mohanrao K, Shokhireva TKh, Walker FA, Debrunner PG, Scheidt W (1999) J Am Chem Soc 121:11144–11155

    Google Scholar 

  29. Safo MK, Nesset MJM, Walker FA, Debrunner PG, Scheidt WR (1997) J Am Chem Soc 119:9438–9448

    Google Scholar 

  30. Berman HM, Westbrok J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Google Scholar 

  31. Simoes P, Matias PM, Morais J, Wilson K, Dauter Z, Carrondo MA (1998) Inorg Chim Acta 273:213–224

    Google Scholar 

  32. Slater JC (1974) Quantum theory of molecules and solids, vol 4. McGraw-Hill, New York

  33. Becke AD (1988) Phys Rev A 38:3098–3100

    Google Scholar 

  34. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Google Scholar 

  35. Lee C, Yang W, Paar RG (1988) Phys Rev B 46:785–789

    Google Scholar 

  36. Miehlich B, Savin A, Stoll H, Pruess H (1989) Chem Phys Lett 157:200–206

    Google Scholar 

  37. Zarić SD, Popović DM, Knapp EW (2000) Chem Eur J 6:3935–3942

    Google Scholar 

  38. Ghosh A, Gonzales E, Vangberg T (1999) J Phys Chem 103:1363–1367

    Google Scholar 

  39. Ziegler T (1995) Can J Chem 73:743–761

    Google Scholar 

  40. Strout DL, Zarić SD, Niu S, Hall MB (1996) J Am Chem Soc 118:6068–6069

    Google Scholar 

  41. Siegbahn PEM, Crabtree RH (1997) J Am Chem Soc 119:3103–3113

    Google Scholar 

  42. Niu S, Hall MB (1998) J Am Chem Soc 120:6169–6170

    Google Scholar 

  43. Zarić SD, Hall MB (1998) J Phys Chem 102:1963–1964

    Google Scholar 

  44. Zarić SD (1999) Chem Phys Lett 311:77–80

    Google Scholar 

  45. JAGUAR 4.2, Schrödinger, Inc, Portland, OR, 1991–2000

  46. Tannor DJ, Marten B, Murphy R, Friesner RA, Sitkoff D, Nicholls A, Ringnalda M, Goddard III WA, Honig B (1994) J Am Chem Soc 116:11875–11882

    Google Scholar 

  47. Marten B, Kim K, Cortis C, Friesner RA, Murphy RB, Ringnalda MN, Sitkoff D, Honig B (1996) J Phys Chem 100:11775–11788

    Google Scholar 

  48. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Google Scholar 

  49. Bayly C, Cieplak P, Cornell W, Kollman P (1993) J Phys Chem 97:10269–10280

    Google Scholar 

  50. Cornell W, Cieplak P, Bayly C, Kollman P (1993) J Am Chem Soc 115:9630–9631

    Google Scholar 

  51. Popović DM, Zarić SD, Rabenstein B, Knapp EW (2001) J Am Chem Soc 123:6040–6053

    Google Scholar 

  52. Schmidt am Busch M, Knapp EW (2004) Chem Phys Chem 5:1513–1522

    Google Scholar 

  53. Gilson M, Honig B (1986) Biopolymers 25:2097–2119

    Google Scholar 

  54. Rosen D (1963) Trans Faraday Soc 59:2178–2191

    Google Scholar 

  55. Takashima S, Schwan HP (1965) J Phys Chem 69:4176–4182

    Google Scholar 

  56. Schutz CN, Warshel A (2001) Proteins 44:400–417

    Google Scholar 

  57. Bashford D, Gerwert K (1992) J Mol Biol 224:473–486

    Google Scholar 

  58. Bashford D, (1997) An object-oriented programming suite for electrostatic effects in biological molecules. In: Yutaka I, Rodney RO, John VWR, Marydell T (eds) Scientific computing in object-oriented parallel environments, v. 1343 of Lecture notes in computer science, ISCOPE97. Springer Berlin Heidelberg, New York pp 233–240

    Google Scholar 

  59. Rocchia W, Alexov E, Honig B (2001) J Phys Chem 105:6507–6514

    Google Scholar 

  60. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) J Comp Chem 23:128–137

    Google Scholar 

  61. ACD/ChemSketch, 1994–2001 Advanced Chemistry Development Inc

  62. Voigt P, Knapp EW (2003) J Biol Chem 278:51993–52001

    Google Scholar 

  63. Momot KI, Walker FA (1997) J Phys Chem 101:2787–2795

    Google Scholar 

  64. Shokhirev NV, Shokhireva TKh, Polam JR, Watson CT, Raffii K, Simons U, Walker FA (1997) J Phys Chem 101:2778–2786

    Google Scholar 

  65. Nakamura M, Tajima K, Tada K, Ishizu K, Nakamura N (1994) Inorg Chim Acta 224:113–124

    Google Scholar 

  66. Polam JR, Shokhireva TKh, Raffii K, Simons U, Walker FA (1997) Inorg Chim Acta 263:109–117

    Google Scholar 

  67. Medacović V, Zarić SD (2003) Inorg Chim Acta 349:1–5

    Google Scholar 

  68. Humphrey W, Dalke A, Schulten K (1996) “VMD–visual molecular dynamics”. J Mol Graphics 14:33–38

    Google Scholar 

  69. Flükiger P, Lüthi HP, Portmann S, Weber J 2000–2001 MOLEKEL 4.3, Swiss Center for Scientific Computing, Manno Switzerland

  70. Topol IA, Tawa GJ, Burt SK, Rashin AA (1997) J Phys Chem A 101:10075–10081

    Google Scholar 

  71. Rashin AA, Namboodiri K (1987) J Phys Chem 91:6003–6012

    Google Scholar 

  72. Miertuš S, Tomasi J (1982) Chem Phys 65:239–245

    Google Scholar 

  73. Chen JL, Noodleman L, Case DA, Bashford D (1994) J Phys Chem 98:11059–11068

    Google Scholar 

  74. Lovell T, Himo F, Han WG, Noodleman L (2003) Coor Chem Rev 238-239:211–232

    Google Scholar 

Download references

Acknowledgements

We thank Donald Bashford and Martin Karplus for providing the programs MEAD and CHARMM, respectively. S.D.Z. is grateful for generous support by the Humboldt foundation. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 498 Project A5; Forschergruppe 475; GRK 80/2; GRK 268; GRK 788/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst-Walter Knapp.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galstyan, A.S., Zarić, S.D. & Knapp, EW. Computational studies on imidazole heme conformations. J Biol Inorg Chem 10, 343–354 (2005). https://doi.org/10.1007/s00775-005-0642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0642-8

Keywords

Navigation