Skip to main content
Log in

Conformational transitions and redox potential shifts of cytochrome P450 induced by immobilization

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cytochrome P450 (P450) from Pseudomonas putida was immobilized on Ag electrodes coated with self-assembled monolayers (SAMs) via electrostatic and hydrophobic interactions as well as by covalent cross-linking. The redox and conformational equilibria of the immobilized protein were studied by potential-dependent surface-enhanced resonance Raman spectroscopy. All immobilization conditions lead to the formation of the cytochrome P420 (P420) form of the enzyme. The redox potential of the electrostatically adsorbed P420 is significantly more positive than in solution and shows a steady downshift upon shortening of the length of the carboxyl-terminated SAMs, i.e., upon increasing the strength of the local electric field. Thus, two opposing effects modulate the redox potential of the adsorbed enzyme. First, the increased hydrophobicity of the heme environment brought about by immobilization on the SAM tends to upshift the redox potential by stabilizing the formally neutral ferrous form. Second, increasing electric fields tend to stabilize the positively charged ferric form, producing the opposite effect. The results provide insight into the parameters that control the structure and redox properties of heme proteins and contribute to the understanding of the apparently anomalous behavior of P450 enzymes in bioelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Danielson PB (2002) Curr Drug Metab 3:561–597

    Article  PubMed  CAS  Google Scholar 

  2. Kelly SL, Lamb DC, Jackson CJ, Warrilow AGS, Kelly DE (2003) Adv Microb Physiol 47:131–186

    PubMed  CAS  Google Scholar 

  3. Li HY, Poulos TL (2004) Curr Top Med Chem 4:1789–1802

    Article  PubMed  CAS  Google Scholar 

  4. Makris TM, Davydov R, Denisov IG, Hoffman BM, Sligar SG (2002) Drug Metab Rev 34:691–708

    Article  PubMed  CAS  Google Scholar 

  5. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980

    Article  PubMed  CAS  Google Scholar 

  6. Munro AW, Lindsay JG (1996) Mol Microbiol 20:1115–1125

    Article  PubMed  CAS  Google Scholar 

  7. Zangar RC, Davydov DR, Verma S (2004) Toxicol Appl Pharmacol 199:316–331

    Article  PubMed  CAS  Google Scholar 

  8. Archakov AI, Ivanov YD (2002) Meth Enzymol 357:94–103

    Article  PubMed  CAS  Google Scholar 

  9. Cryle MJ, Stok JE, De Voss JJ (2003) Aust J Chem 56:749–762

    Article  CAS  Google Scholar 

  10. Guengerich FP (2002) Nat Rev Drug Discov 1:359–366

    Article  PubMed  CAS  Google Scholar 

  11. Koeller KM, Wong CH (2001) Nature 409:232–240

    Article  PubMed  CAS  Google Scholar 

  12. Davis JJ, Djuricic D, Lo KKW, Wallace ENK, Wong LL, Hill HAO (2000) Faraday Discuss 116:15–22

    Article  PubMed  CAS  Google Scholar 

  13. Estavillo C, Lu Z, Jansson I, Schenkman JB, Rusling JF (2003) Biophys Chem 104:291–296

    Article  PubMed  CAS  Google Scholar 

  14. Fleming BD, Tian Y, Bell SG, Wong LL, Urlacher V, Hill HAO (2003) Eur J Biochem 270:4082–4088

    Article  PubMed  CAS  Google Scholar 

  15. Joseph S, Rusling JF, Lvov YM, Friedberg T, Fuhr U (2003) Biochem Pharmacol 65:1817–1826

    PubMed  CAS  Google Scholar 

  16. Lei C, Wollenberger U, Jung C, Scheller F (2000) Biophys Res Commun 268:740–744

    Article  CAS  Google Scholar 

  17. Lvov YM, Lu ZQ, Schenkman JB, Zu XL, Rusling JF (1998) J Am Chem Soc 120:4073–4080

    Article  CAS  Google Scholar 

  18. Munge B, Estavillo C, Schenkman JB, Rusling JF (2003) Chembiochem 4:82–89

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Z, Nassar AEF, Lu ZQ, Schenkman JB, Rusling JF (1997) J Chem Soc Faraday Trans 93:1769–1774

    Article  CAS  Google Scholar 

  20. Zu XL, Lu ZQ, Zhang Z, Schenkman JB, Rusling JF (1999) Langmuir 15:7372–7377

    Article  CAS  Google Scholar 

  21. Murgida DH, Hildebrandt P (2004) Acc Chem Res 37:854–861

    Article  PubMed  CAS  Google Scholar 

  22. Macdonald IDG, Smith GCM, Wolf CR, Smith WE (1996) Biochem Biophys Res Comm 226:51–58

    Article  PubMed  CAS  Google Scholar 

  23. Quaroni L, Reglinski J, Wolf R, Smith WE (1996) Biochim Biophys Acta 1296:5–8

    PubMed  Google Scholar 

  24. Rospendowski BN, Kelly K, Wolf CR, Smith WE (1991) J Am Chem Soc 113:1217–1225

    Article  CAS  Google Scholar 

  25. Champion PM, Gunsalus IC, Wagner GC (1978) J Am Chem Soc 100:3743–3751

    Article  CAS  Google Scholar 

  26. Hudecek J, Anzenbacherova E, Anzenbacher P, Munro AW, Hildebrandt P (2000) Arch Biochem Biophys 383:70–78

    Article  PubMed  CAS  Google Scholar 

  27. Jung C (2002) Biophys Acta 1595:309–328

    CAS  Google Scholar 

  28. Okeefe DH, Ebel RE, Peterson JA, Maxwell JC, Caughey WS (1978) Biochemistry 17:5845–5852

    Article  PubMed  CAS  Google Scholar 

  29. Ozaki Y, Kitagawa T, Kyogoku Y, Imai Y, Hashimotoyutsudo C, Sato R (1978) Biochemistry 17:5826–5831

    Article  PubMed  CAS  Google Scholar 

  30. Poulos TL, Finzel BC, Howard AJ (1986) Biochemistry 25:5314–5322

    Article  PubMed  CAS  Google Scholar 

  31. Shimada H, Nagano S, Ariga Y, Unno M, Egawa T, Hishiki T, Ishimura Y (1999) J Biol Chem 274:9363–9369

    Article  PubMed  CAS  Google Scholar 

  32. Sligar SG (1976) Biochemistry 15:5399–5406

    Article  PubMed  CAS  Google Scholar 

  33. Stayton PS, Sligar SG (1990) Biochemistry 29:7381–7386

    Article  PubMed  CAS  Google Scholar 

  34. Wells AV, Li PS, Champion PM, Martinis SA, Sligar SG (1992) Biochemistry 31:4384–4393

    Article  PubMed  CAS  Google Scholar 

  35. Yu CA, Gunsalus IC (1974) J Biol Chem 249:102–106

    PubMed  CAS  Google Scholar 

  36. Jung C, Hui Bon Hoa G, Schröder KL, Simon M, Doucet JP (1992) Biochemistry 31:12855–12862

    Article  PubMed  CAS  Google Scholar 

  37. Franke A, Stochel G, Jung C, van Eldik R (2004) J Am Chem Soc 126:4181–4191

    Article  PubMed  CAS  Google Scholar 

  38. Murgida DH, Hildebrandt P (2001) J Phys Chem B 105:1578–1586

    Article  CAS  Google Scholar 

  39. Döpner S, Hildebrandt P, Mauk AG, Lenk H, Stempfle W (1996) Spectrochim Acta A Mol Biomol Spectrosc 52:573–584

    Article  Google Scholar 

  40. Rivas L, Soares CM, Baptista AM, Simaan J, Di Paolo RE, Murgida DH, Hildebrandt P (2005) Biophys J 88:4188–4199

    Article  PubMed  CAS  Google Scholar 

  41. Simaan AJ, Murgida DH, Hildebrandt P (2002) Biopolymers 67:331–334

    Article  PubMed  CAS  Google Scholar 

  42. Lewis DFV, Hlavica P (2000) Biochim Biophys Acta 1460:353–374

    Article  PubMed  CAS  Google Scholar 

  43. Spiro TG (1985) Adv Prot Chem 37:111–159

    CAS  Google Scholar 

  44. Martinis SA, Blanke SR, Hager LP, Sligar SG, Hui Bon Hoa G, Rux JJ, Dawson JH (1996) Biochemistry 35:14530–14536

    Article  PubMed  CAS  Google Scholar 

  45. Mouro C, Jung C, Bondon A, Simonneaux G (1997) Biochemistry 36:8125–8134

    Article  PubMed  CAS  Google Scholar 

  46. Hui Bon Hoa G, Di Primo C, Dondaine I, Sligar SG, Gunsalus IC, Douzou P (1989) Biochemistry 28:651–656

    Article  PubMed  CAS  Google Scholar 

  47. Hui Bon Hoa G, Di Primo C, Geze M, Douzou P, Kornblatt JA, Sligar SG (1990) Biochemistry 29:6810–6815

    Article  PubMed  CAS  Google Scholar 

  48. Ichikawa Y, Yamano T (1967) Biochim Biophys Acta 147:518–525

    PubMed  CAS  Google Scholar 

  49. Ichikawa Y, Yamano T (1967) Biochim Biophys Acta 131:490–497

    Article  PubMed  CAS  Google Scholar 

  50. Imai Y, Sato R (1967) Eur J Biochem 1:419–426

    Article  PubMed  CAS  Google Scholar 

  51. Omura T, Sato R (1964) J Biol Chem 239:2379–2385

    PubMed  CAS  Google Scholar 

  52. Murgida DH, Hildebrandt P (2001) J Am Chem Soc 123:4062–4068

    Article  PubMed  CAS  Google Scholar 

  53. Murgida DH, Hildebrandt P (2002) J Phys Chem B 106:12814–12819

    Article  CAS  Google Scholar 

  54. Oellerich S, Wackerbarth H, Hildebrandt P (2002) J Phys Chem B 106:6566–6580

    Article  CAS  Google Scholar 

  55. Othman S, Lelirzin A, Desbois A (1994) Biochemistry 33:15437–15448

    Article  PubMed  CAS  Google Scholar 

  56. Oellerich S (2001) PhD Thesis, MPI, Germany. ISSN 0932–5131

  57. Smolinski S, Zelenay P, Sobkowski J (1998) J Electroanal Chem 442:41–47

    Article  CAS  Google Scholar 

  58. Barker PD, Nerou EP, Cheesman MR, Thomson AJ, deOliveira P, Hill HAO (1996) Biochemistry 35:13618–13626

    Article  PubMed  CAS  Google Scholar 

  59. Fisher MT, Sligar SG (1985) J Am Chem Soc 107:5018–5019

    Article  CAS  Google Scholar 

  60. Gibney B R, Dutton PL (2001) Adv Inorg Chem 51:295–358

    Google Scholar 

  61. Kassner RJ (1973) J Am Chem Soc 95:2674–2677

    Article  PubMed  CAS  Google Scholar 

  62. Popovic DM, Zaric SD, Rabenstein B, Knapp EW (2001) J Am Chem Soc 123:6040–6053

    Article  PubMed  CAS  Google Scholar 

  63. Rodgers KK, Sligar SG (1991) J Am Chem Soc 113:9419–9421

    Article  CAS  Google Scholar 

  64. Shifman JM, Gibney BR, Sharp RE, Dutton PL (2000) Biochemistry 39:14813–14821

    Article  PubMed  CAS  Google Scholar 

  65. Tezcan FA, Winkler JR, Gray HB (1998) J Am Chem Soc 120:13383–13388

    Article  CAS  Google Scholar 

  66. Varadarajan R, Zewert TE, Gray HB, Boxer SG (1989) Science 243:69–72

    Article  PubMed  CAS  Google Scholar 

  67. Voigt P, Knapp EW (2003) J Biol Chem 278:51993–52001

    Article  PubMed  CAS  Google Scholar 

  68. Wirtz M, Oganesyan V, Zhang XJ, Studer J, Rivera M (2000) Faraday Discuss, pp 221–234

  69. Wittung-Stafshede P (1999) Biochim Biophys Acta Protein Struct Mol Enzym 1432:401–405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the FCT (POCTI-BIO−43105-2001) and the DFG (Sfb498-A8 and Ju229/4-3) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Murgida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todorovic, S., Jung, C., Hildebrandt, P. et al. Conformational transitions and redox potential shifts of cytochrome P450 induced by immobilization. J Biol Inorg Chem 11, 119–127 (2006). https://doi.org/10.1007/s00775-005-0054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0054-9

Keywords

Navigation