Skip to main content
Log in

Mechanisms of iron–sulfur cluster assembly: the SUF machinery

  • MINIREVIEW
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 19 November 2005

Abstract

Biosynthesis of iron-sulfur clusters is a cellular process which depends on complex protein machineries. Escherichia coli contains two such biosynthetic systems, ISC and SUF. In this review article we specifically make a presentation of the various Suf proteins and discuss the molecular mechanisms by which these proteins work together to assemble Fe and S atoms within a scaffold and to transfer the resulting cluster to target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beinert H, Kiley PJ (1999) Curr Opin Chem Biol 3:152–157

    Article  PubMed  CAS  Google Scholar 

  2. Beinert H (2000) JBIC 5:2–15

    Article  PubMed  CAS  Google Scholar 

  3. Kiley PJ, Beinert H (2003) Curr Opin Microbiol 6:181–185

    Article  PubMed  CAS  Google Scholar 

  4. Jacobson MR, Cash VL, Weiss MC, Laird NF, Newton WE, Dean DR (1989) Mol Gen Genet 219:49–57

    Article  PubMed  CAS  Google Scholar 

  5. Kennedy C, Dean DR (1992) Mol Gen Genet 231:494–498

    Article  PubMed  CAS  Google Scholar 

  6. Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Proc Natl Acad Sci USA 90:2754–2758

    Article  PubMed  CAS  Google Scholar 

  7. Zheng L, Cash VL, Flint DH, Dean DR (1998) J Biol Chem 273:13264–13272

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi Y, Nakamura M (1999) J Biochem (Tokyo) 126:917–926

    CAS  Google Scholar 

  9. Lill R, Diekert K, Kaut A, Lange H, Pelzer W, Prohl C, Kispal G (1999) Biol Chem 380:1157–1166

    Article  PubMed  CAS  Google Scholar 

  10. Lill R, Mühlenhoff U (2005) Trends Biochem Sci 30:133–141

    Article  PubMed  CAS  Google Scholar 

  11. Balk J, Lill R (2004) Chem Bio Chem 5:1044–1049

    PubMed  CAS  Google Scholar 

  12. Moller SG, Kunkel T, Chua NH (2001) Genes Dev 15:90–103

    Article  PubMed  CAS  Google Scholar 

  13. Xu XM, Moller SG (2004) Proc Natl Acad Sci USA 101:9143–9148

    Article  PubMed  CAS  Google Scholar 

  14. Xu XM, Adams S, Chuan NH, Moller SG (2005) J Biol Chem 280:6648–6654

    Article  PubMed  CAS  Google Scholar 

  15. Hjorth E, Hadfi K, Zauner S, Maier UG (2005) FEBS Lett 579:1129–1135

    Article  PubMed  CAS  Google Scholar 

  16. Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F (2001) Mol Microbiol 39:960–972

    Article  PubMed  CAS  Google Scholar 

  17. Nachin L, Loiseau L, Expert D, Barras F (2003) EMBO J 22:427–437

    Article  PubMed  CAS  Google Scholar 

  18. Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001) J Bacteriol 183:4562–4570

    Article  PubMed  CAS  Google Scholar 

  19. Outten FW, Djaman O, Storz G (2004) Mol Microbiol 52:861–872

    Article  PubMed  CAS  Google Scholar 

  20. Loiseau L, Ollagnier de Choudens S, Lascoux D, Forest E, Fontecave M, Barras F (2005) J Biol Chem 280:26760–26769

    Article  PubMed  CAS  Google Scholar 

  21. Barras F, Loiseau L, Py B (2005) Adv Microbiol Physiol Vol 50 (in press)

  22. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Annu Rev Biochem 74:247–281

    Article  PubMed  CAS  Google Scholar 

  23. Patzer SI, Hantke K (1999) J Bacteriol 181:3307–3309

    PubMed  CAS  Google Scholar 

  24. Takahashi Y, Tokumoto U (2002) J Biol Chem 277:28380–28383

    Article  PubMed  CAS  Google Scholar 

  25. Law AE, Mullineaux CW, Hirst EM, Saldanha J, Wilson RJ (2000) Protist 151:317–327

    Article  PubMed  CAS  Google Scholar 

  26. Lee JH, Yeo WS, Roe JH (2004) Mol Microbiol 51:1745–1755

    Article  PubMed  CAS  Google Scholar 

  27. McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC (2003) J Biol Chem 278:29478–29486

    Article  PubMed  CAS  Google Scholar 

  28. Tokumoto U, Kitamura S, Fukuyama K, Takahashi Y (2004) J Biochem (Tokyo) 136:199–209

    CAS  Google Scholar 

  29. Mihara H, Kurihara T, Yoshimura T, Soda K, Esaki N (1997) J Biol Chem 272:22417–22424

    Article  PubMed  CAS  Google Scholar 

  30. Mihara H, Maeda M, Fujii T, Kurihara T, Hata Y, Esaki N (1999) J Biol Chem 274:14768–14772

    Article  PubMed  CAS  Google Scholar 

  31. Mihara H, Kurihara T, Yoshimura T, Esaki N (2000) J Biochem (Tokyo) 127:559–567

    CAS  Google Scholar 

  32. Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F (2003) J Biol Chem 278:38352–38359

    Article  PubMed  CAS  Google Scholar 

  33. Outten FW, Wood MJ, Munoz FM, Storz G (2003) J Biol Chem 278:45713–45719

    Article  PubMed  CAS  Google Scholar 

  34. Ollagnier-de-Choudens S, Lascoux D, Loiseau L, Barras F, Forest E, Fontecave M (2003) FEBS Lett 555:263–267

    Article  PubMed  CAS  Google Scholar 

  35. Fujii T, Maeda M, Mihara H, Kurihara T, Esaki N, Hata Y (2000) Biochemistry 39:1263–1273

    Article  PubMed  CAS  Google Scholar 

  36. Mihara H, Fujii T, Kato S, Kurihara T, Hata Y, Esaki N (2002) J Biochem (Tokyo) 131:679–685

    CAS  Google Scholar 

  37. Lima CD (2002) J Mol Biol 315:1199–1208

    Article  PubMed  CAS  Google Scholar 

  38. Mihara H, Esaki N (2002) Appl Microbiol Biotechnol 60:12–23

    Article  PubMed  CAS  Google Scholar 

  39. Tirupati B, Vey JL, Drennan CL, Bollinger JM (2004) J Biol Chem 43:12210–12219

    CAS  Google Scholar 

  40. Adinolfi S, Rizzo F, Masino L, Nair M, Martin SR, Pastore A, Temussi PA (2004) Eur J Biochem. 271:2093–2100

    Article  PubMed  CAS  Google Scholar 

  41. Ollagnier-de-Choudens S, Mattioli T, Takahashi Y, Fontecave M (2001) J Biol Chem 276:22604–22607

    Article  PubMed  CAS  Google Scholar 

  42. Krebs C, Agar JN, Smith AD, Frazzon J, Dean DR, Huynh BH, Johnson MK (2001) Biochemistry 40:14069–14080

    Article  PubMed  CAS  Google Scholar 

  43. Wu G, Mansy SS, Hemann C, Hille R, Surerus KK, Cowan JA (2002) J Biol Inorg Chem 7:526–532

    Article  PubMed  CAS  Google Scholar 

  44. Loiseau L, Ollagnier de Choudens S, Nachin L, Fontecave M, Barras F (2003) J Biol Chem 278:38352–38359

    Article  PubMed  CAS  Google Scholar 

  45. Ollagnier-de-Choudens S, Sanakis Y, Fontecave M (2004) J Biol Inorg Chem 9:828–838

    Article  PubMed  CAS  Google Scholar 

  46. Wollenberg M, Berndt C, Bill E, Schwenn JD, Seidler A (2003) Eur J Biochem 270:1662–1671

    Article  PubMed  CAS  Google Scholar 

  47. Morimoto K, Nishio K, Nakai M (2002) FEBS Lett 519:123–127

    Article  PubMed  CAS  Google Scholar 

  48. Popescu CV, Bates DM, Beinert H, Münck E, Kiley PJ (1998) Proc Natl Acad Sci USA 95:13431–13435

    Article  PubMed  CAS  Google Scholar 

  49. Benda R, Tse Sum Bui B, Schunemann V, Florentin D, Marquet A, Trautwein A (2002) Biochemistry 41:15000–15006

    Article  PubMed  CAS  Google Scholar 

  50. Bilder PW, Ding H, Newcomer ME (2003) Biochemistry 43:133–139

    Article  Google Scholar 

  51. Cupp-Vickery JR, Silberg JJ, Ta DT, Vickery LE (2004) J Mol Biol 338:127–37

    Article  PubMed  CAS  Google Scholar 

  52. Ding H, Clark RJ (2004) Biochem J 379:433–440

    Article  PubMed  CAS  Google Scholar 

  53. Ding H, Clark RJ, Ding B (2004) J Biol Chem 279:37499–37504

    Article  PubMed  CAS  Google Scholar 

  54. Urbina HD, Silberg JJ, Hoff KG, Vickery LE (2001) J Biol Chem 276:44521–44526

    Article  PubMed  CAS  Google Scholar 

  55. Nuth M, Yoon T, Cowan JA (2002) J Am Chem Soc 124:8774–8775

    Article  PubMed  CAS  Google Scholar 

  56. Smith AD, Agar JN, Johnson KA, Frazzon J, Amster IJ, Dean DR, Johnson MK (2001) J Am Chem Soc 123:11103–11104

    Article  PubMed  CAS  Google Scholar 

  57. Adinolfi S, Rizzo F, Masino L, Nair M, Martin SR, Pastore A, Temussi PA (2004) Eur J Biochem 271:2093–2100

    Article  PubMed  CAS  Google Scholar 

  58. Mansy SS, Wu G, Surerus KK, Cowan JA (2002) J Biol Chem 277:21397–21404

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fontecave.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00775-005-0051-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontecave, M., Choudens, S.O.d., Py, B. et al. Mechanisms of iron–sulfur cluster assembly: the SUF machinery. J Biol Inorg Chem 10, 713–721 (2005). https://doi.org/10.1007/s00775-005-0025-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0025-1

Keywords

Navigation