Skip to main content
Log in

Catecholase activity of a μ-hydroxodicopper(II) macrocyclic complex: structures, intermediates and reaction mechanism

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The monohydroxo-bridged dicopper(II) complex (1), its reduced dicopper(I) analogue (2) and the trans-μ-1,2-peroxo-dicopper(II) adduct (3) with the macrocyclic N-donor ligand [22]py4pz (9,22-bis(pyridin-2′-ylmethyl)-1,4,9,14,17,22,27,28,29,30- decaazapentacyclo -[22.2.114,7.111,14.117,20]triacontane-5,7(28),11(29),12,18,20(30), 24(27),25-octaene), have been prepared and characterized, including a 3D structure of 1 and 2. These compounds represent models of the three states of the catechol oxidase active site: met, deoxy (reduced) and oxy. The dicopper(II) complex 1 catalyzes the oxidation of catechol model substrates in aerobic conditions, while in the absence of dioxygen a stoichiometric oxidation takes place, leading to the formation of quinone and the respective dicopper(I) complex. The catalytic reaction follows a Michaelis–Menten behavior. The dicopper(I) complex binds molecular dioxygen at low temperature, forming a trans-μ-1,2-peroxo-dicopper adduct, which was characterized by UV–Vis and resonance Raman spectroscopy and electrochemically. This peroxo complex stoichiometrically oxidizes a second molecule of catechol in the absence of dioxygen. A catalytic mechanism of catechol oxidation by 1 has been proposed, and its relevance to the mechanisms earlier proposed for the natural enzyme and other copper complexes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2605

    Article  PubMed  CAS  Google Scholar 

  2. Magnus KA, Ton-That H, Carpenter JE (1993) In: Karlin KD, Tyeklar Z (eds) Bioinorganic Chemistry of Copper. Chapman&Hall, New York, pp 143–150

    Google Scholar 

  3. Volbeda A, Hol WG (1989) J Mol Biol 209:249–279

    Article  PubMed  CAS  Google Scholar 

  4. Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Nat Struct Biol 5:1084–1090

    Article  PubMed  CAS  Google Scholar 

  5. Selmeczi K, Reglier M, Speier G, Peintler G (2004) React Kinet Catal Lett 81:143–151

    Article  CAS  Google Scholar 

  6. Selmeczi K, Reglier M, Giorgi M, Speier G (2003) Coord Chem Rev 245: 191–201

    Article  CAS  Google Scholar 

  7. Gao J, Reibenspies JH, Martell AE (2003) Inorg Chim Acta 346:67–75

    Article  CAS  Google Scholar 

  8. Ackermann J, Meyer F, Kaifer E, Pritzkow H (2002) Chem Eur J 8: 247–258

    Article  CAS  Google Scholar 

  9. Börzel H, Comba P, Pritzkow H (2001) Chem Commun 97–98

  10. Granata A, Monzani E, Casella L (2004) J Biol Inorg Chem 9:903–913

    Article  PubMed  CAS  Google Scholar 

  11. Louloudi M, Mitopoulou K, Evaggelou E, Deligiannakis Y, Hadjiliadis N (2003) J Mol Cat A 198:231–240

    Article  CAS  Google Scholar 

  12. Merkel M, Möller N, Piacenza M, Grimme S, Rompel A, Krebs B (2005) Chem Eur J 11:1201–1209

    Article  CAS  Google Scholar 

  13. Mukherjee J, Mukherjee R (2002) Inorg Chim Acta 337:429–438

    Article  CAS  Google Scholar 

  14. Monzani E, Battaini G, Perotti A, Casella L, Gullotti M, Santagostini L, Nardin G, Randaccio L, Geremia S, Zanello P, Opromolla G (1999) Inorg Chem 38:5359–5369

    Article  CAS  Google Scholar 

  15. Monzani E, Quinti L, Perotti A, Casella L, Gulotti M, Randaccio L, Geremia S, Nardin G, Faleschini P, Tabbi G (1998) Inorg Chem 37:553–562

    Article  PubMed  CAS  Google Scholar 

  16. Than R, Feldmann AA, Krebs B (1999) Coord Chem Rev 182:211–241

    Article  Google Scholar 

  17. Torelli S, Belle C, Gautier-Luneau I, Pierre JL, Saint-Aman E, Latour JM, Le Pape L, Luneau D (2000) Inorg Chem 39:3526–3536

    Article  PubMed  CAS  Google Scholar 

  18. Torelli S, Belle C, Hamman S, Pierre JL, Saint-Aman E (2002) Inorg Chem 41:3983–3989

    Article  PubMed  CAS  Google Scholar 

  19. Koval IA, van der Schilden K, Schuitema AM, Gamez P, Belle C, Pierre J-L, Luken M, Krebs B, Roubeau O, Reedijk J (2005) Inorg Chem 44: 4372–4382

    Article  PubMed  CAS  Google Scholar 

  20. Gerdemann C, Eicken C, Krebs B (2002) Acc Chem Res 35:183–191

    Article  PubMed  CAS  Google Scholar 

  21. Schuitema AM, Aubel PG, Koval IA, Engelen M, Driessen WL, Reedijk J, Lutz M, Spek AL (2003) Inorg Chim Acta 355:374–385

    Article  CAS  Google Scholar 

  22. Schwarzenbach G, Schwarzenbach K (1963) Helv Chim Acta 46: 1390–1400

    Article  CAS  Google Scholar 

  23. Casella L, Monzani E, Gulotti M, Cavagnino D, Cerina G, Santagostini L, Ugo R (1996) Inorg Chem 35:7516–7525

    Article  CAS  Google Scholar 

  24. Battaini G, Monzani E, Casella L, Santagostini L, Pagliarin R (2000) J Biol Inorg Chem 5:262–268

    Article  PubMed  CAS  Google Scholar 

  25. Battaini G, De Carolis M, Monzani E, Tuczek F, Casella L (2003) Chem Commun:726–727

  26. TEXSAN, Single-crystal structure analysis software, version 1.7 (1995) Molecular Structure Corporation:The Woodlands, TX

  27. Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc, Dalton Trans 1349–1356

  28. Liu W, Thorp HH (1993) Inorg Chem 32:4102–4105

    Article  CAS  Google Scholar 

  29. Baldwin MJ, Ross PK, Pate JE, Tyeklár Z, Karlin KD, Solomon EI (1991) J Am Chem Soc 113:8671–8679

    Article  CAS  Google Scholar 

  30. Solomon EI, Tuczek F, Root DE, Brown CA (1994) Chem Rev 94:827–856

    Article  CAS  Google Scholar 

  31. Mirica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013–1045

    Article  PubMed  CAS  Google Scholar 

  32. Bol JE, Driessen WL, Ho RYN, Maase B, Que L, Reedijk J (1997) Ang Chem, Int Ed 36:998–1000

    Article  CAS  Google Scholar 

  33. Gamez P, Koval IA, Reedijk J (2004) Dalton Transactions:4079–4088

  34. Paul PP, Tyeklár Z, Jacobson RR, Karlin KD (1991) J Am Chem Soc 113:5322–5332

    Article  CAS  Google Scholar 

  35. Reim J, Krebs B (1997) J Chem Soc, Dalton Trans 3793–3804

  36. Shearer J, Xin Zhang C, Zacharov LN, Rheingold AL, Karlin KD (2005) J Am Chem Soc 127:5469–5483

    Article  PubMed  CAS  Google Scholar 

  37. Ghiladi M, Gomez JT, Hazell A, Lumtscher J, McKenzie CJ (2003) Dalton Trans 1320–1325

  38. Harris WR, McLendon GL, Martell AE, Bess RC, Mason M (1980) Inorg Chem 19:21–26

    Article  CAS  Google Scholar 

  39. Eicken C, Krebs B, Sacchettini JC (1999) Curr Opin Struct Biol 9: 677–683

    Article  PubMed  CAS  Google Scholar 

  40. Gupta M, Mathur P, Butcher RJ (2001) Inorg Chem 40:878–885

    Article  PubMed  CAS  Google Scholar 

  41. Rockcliffe DA, Martell AE (1995) J Mol Catal A 99:101–114

    Article  CAS  Google Scholar 

  42. Chyn J-P, Urbach FL (1991) Inorg Chim Acta 189:157–163

    Article  CAS  Google Scholar 

  43. Kitajima N, Koda T, Iwata Y, Moro-oka Y (1990) J Am Chem Soc 112: 8833–8839

    Article  CAS  Google Scholar 

  44. Santagostini L, Gulotti M, Monzani E, Casella L, Dillinger R, Tuczek F (2000) Chem Eur J 6:519–522

    Article  CAS  Google Scholar 

  45. Mahadevan V, Dubois L, Hedman B, Hodgson KO, Stack TD (1999) J Am Chem Soc 121:5583–5584

    Article  CAS  Google Scholar 

  46. Berreau LM, Mahapatra S, Halfen JA, Houser RP, Young VG, Tolman WB (1999) Angew Chem Int Ed Engl 38:207–210

    Article  CAS  Google Scholar 

  47. Rockcliffe DA, Martell AE (1992) J Chem Soc, Chem Commun 1758–1760

  48. Rockcliffe DA, Martell AE, Reibenspies JH (1996) J Chem Soc, Dalton Trans 167–175

  49. Rockcliffe DA, Martell AE (1996) J Mol Cat A 106:211–221

    Article  CAS  Google Scholar 

  50. Rockcliffe DA, Martell AE (1995) J Mol Catal A 99:87–99

    Article  CAS  Google Scholar 

  51. Rockcliffe DA, Martell AE (1993) Inorg Chem 32:3143–3152

    Article  CAS  Google Scholar 

  52. Börzel H, Comba P, Hagen KS, Kerscher M, Pritzkow H, Schatz E, Schindler S, Walter O (2002) Inorg Chem 41:5440–5452

    Article  PubMed  CAS  Google Scholar 

  53. Root DE, Mahroof-Tahir M, Karlin KD, Solomon EI (1998) Inorg Chem 37:4838–4848

    Article  PubMed  CAS  Google Scholar 

  54. Itoh K, Hayashi H, Furutachi H, Mathumoto T, Nagamoto S, Tosha T, Terada S, Fujinami S, Suzuki F, Kitagawa T (2005) J Am Chem Soc, and references therein 127:5212–5223

    Article  CAS  Google Scholar 

  55. Karlin KD, Ghosh P, Cruse RW, Meyer GJ, Farooq A, Gultneh Y, Jacobson RR, Blackburn NJ, Strange RW, Zubieta J (1988) J Am Chem Soc 110:6769–6780

    Article  CAS  Google Scholar 

  56. Itoh S, Kumei H, Taki M, Nagamoto S, Kitagawa T, Fukuzumi S (2001) J Am Chem Soc 123:6708–6709

    Article  PubMed  CAS  Google Scholar 

  57. Martell AE, Motekaitis RJ, Menif R, Rockcliffe DA, Llobet A (1997) J Mol Cat A 117:205–213

    Article  CAS  Google Scholar 

  58. Rompel A, Fischer H, Meiwes D, Buldt Karentsopoulos K, Dillinger R, Tuczek F, Witzel H, Krebs B (1999) J Biol Inorg Chem 4:56–63

    Article  PubMed  CAS  Google Scholar 

  59. Jung B, Karlin KD, Zuberbühler AD (1996) J Am Chem Soc 118:3763–3764

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of the NRSC Catalysis (a Research School Combination of HRSMC and NIOK) is kindly acknowledged. Also support and sponsorship concerted by COST Action D21/003/2001 is gratefully acknowledged. Collaborative travel grant from the French Ministry of Research and Foreign Affairs (EGIDE) and NWO (Van Gogh Programme), allowing visits and exchanges between Leiden and Grenoble, is gratefully acknowledged. We are very much indebted to Prof. L. Casella and Dr. E. Monzani (University of Pavia, Italy) for their kind assistance with the monophenolase activity studies and for hosting one of the co-authors (AMS). Crystallographic data (without structure factors) for the structure of 2 reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-269469. Copies of the data can be obtained free of charge from the CCDC (12 Union Road, Cambridge CB2 1EZ, UK; tel: (+44) 1223-336-408; fax: (+44) 1223-336-003; e-mail: deposit@ccdc.cam.ac.uk; website see link below).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine Belle or Jan Reedijk.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koval, I.A., Belle, C., Selmeczi, K. et al. Catecholase activity of a μ-hydroxodicopper(II) macrocyclic complex: structures, intermediates and reaction mechanism. J Biol Inorg Chem 10, 739–750 (2005). https://doi.org/10.1007/s00775-005-0016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0016-2

Keywords

Navigation