Skip to main content
Log in

Methionine-121 coordination determines metal specificity in unfolded Pseudomonas aeruginosa azurin

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa azurin binds copper so tightly that it remains bound even upon polypeptide unfolding. Copper can be substituted with zinc without change in protein structure, and also in this complex the metal remains bound upon protein unfolding. Previous work has shown that native-state copper ligands Cys112 and His117 are two of at least three metal ligands in the unfolded state. In this study we use isothermal titration calorimetry and spectroscopic methods to test if the native-state ligand Met121 remains a metal ligand upon unfolding. From studies on a point-mutated version of azurin (Met121Ala) and a set of model peptides spanning the copper-binding C-terminal part (including Cys112, His117 and Met121), we conclude that Met121 is a metal ligand in unfolded copper-azurin but not in the case of unfolded zinc-azurin. Combination of unfolding and metal-titration data allow for determination of copper (CuII and CuI) and zinc affinities for folded and unfolded azurin polypeptides, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The CuII form of azurin was selected over the CuI form for several reasons. This is the stable form of copper azurin in air-exposed solutions; therefore redox agents that may obscure far-UV circular dichroism (CD) measurements, are not needed. Visible absorption can be used to monitor unfolding, and most reported data on wild-type and mutant azurins are for CuII forms

Abbreviations

CD:

circular dichroism

GuHCl:

guanidine hydrochloride

ITC:

isothermal titration calorimetry

References

  1. Bertini I, Cowan JA, Luchinat C, Natarajan K, Piccioli M (1997) Biochemistry 36:9332–9339

    Article  CAS  PubMed  Google Scholar 

  2. Pozdnyakova I, Guidry J, Wittung-Stafshede P (2001) J Biol Inorg Chem 6:182–188

    Article  CAS  PubMed  Google Scholar 

  3. Robinson CR, Liu Y, Thomson JA, Sturtevant JM, Sligar SG (1997) Biochemistry 36:16141–16146

    CAS  PubMed  Google Scholar 

  4. Wittung-Stafshede P, Hill MG, Gomez E, Di Bilio A, Karlsson G, Leckner J, Winkler JR, Gray HB, Malmstrom BG (1998) J Biol Inorg Chem 3:367–370

    CAS  Google Scholar 

  5. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Science 284:805–808

    Article  CAS  PubMed  Google Scholar 

  6. Adman T (1991) Adv Protein Chem 42:145–197

    CAS  PubMed  Google Scholar 

  7. Leckner J, Wittung P, Bonander N, Malmstrom BG, Karlsson G (1997) J Biol Inorg Chem 2:368–371

    CAS  Google Scholar 

  8. DeBeer S, Wittung-Stafshede P, Leckner J, Karlsson G, Winkler J, Gray HB, Malmstrom BG, Solomon E, Hedman B, Hodgson K (2000) Inorg Chim Acta 297:278–282

    Article  Google Scholar 

  9. Pozdnyakova I, Guidry J, Wittung-Stafshede P (2000) J Am Chem Soc 122:6337–6338

    Article  CAS  Google Scholar 

  10. Nar H, Huber R, Messerschmidt A, Filippou AC, Barth M, Jaquinod M, van de Kamp M, Canters GW (1992) Eur J Biochem 205:1123–1129

    CAS  PubMed  Google Scholar 

  11. Pozdnyakova I, Wittung-Stafshede P (2003) Biochim Biophys Acta 1651:1–4

    CAS  PubMed  Google Scholar 

  12. Pozdnyakova I, Guidry J, Wittung-Stafshede P (2002) Biophys J 82:2645–2651

    CAS  PubMed  Google Scholar 

  13. Tanford C (1970) Adv Protein Chem 24:1–95

    CAS  PubMed  Google Scholar 

  14. Wiseman T, Williston S, Brandts JF, Lin L-N (1989) Anal Biochem 179:131–137

    PubMed  Google Scholar 

  15. Tsai LC, Bonander N, Harata K, Karlsson G, Vanngard T, Langer V, Sjolin L (1996) Acta Crystallogr Sect B 52:950–956

    Google Scholar 

  16. Hansen J, McBrayer M, Robbins M, Suh Y (2002) Cell Biochem Biophys 36:19–40

    CAS  PubMed  Google Scholar 

  17. Pozdnyakova I, Wittung-Stafshede P (2002) FEBS Lett 531:209–214

    CAS  PubMed  Google Scholar 

  18. Kettle SFA (1996) Physical inorganic chemistry. University Science Books, Sausalito, Calif

  19. Roat-Malone RM (2002) BioInorganic Chemistry. Wiley-Interscience, New York

  20. Blasie C, Berg JM (2003) J Am Chem Soc 125:6866–6867

    CAS  PubMed  Google Scholar 

  21. Irving H, Williams RJP (1953) J Chem Soc 3182–3189

  22. Bertini I, Gray HB, Lippard SJ, Valentine JS (1994) Bioinorganic chemistry. University Science Books, Sausalito, Calif

  23. Pozdnyakova I, Wittung-Stafshede P (2001) Biochemistry 40:13728–13733

    CAS  PubMed  Google Scholar 

  24. Pozdnyakova I, Wittung-Stafshede P (2001) J Am Chem Soc 123:10135–10136

    CAS  PubMed  Google Scholar 

  25. Winkler J, Wittung-Stafshede P, Leckner J, Malmstrom BG, Gray HB (1997) Proc Natl Acad Sci USA 94:4246–4249

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Andrea Vitello (Tulane University) for help with initial experiments and Dr J. Mierzwa (CIF, Tulane University) for ICP measurements. This work was supported by the National Institutes of Health (GM59663).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pernilla Wittung-Stafshede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, J., Pozdnyakova, I., Guidry, J. et al. Methionine-121 coordination determines metal specificity in unfolded Pseudomonas aeruginosa azurin. J Biol Inorg Chem 9, 281–288 (2004). https://doi.org/10.1007/s00775-004-0523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0523-6

Keywords

Navigation