Skip to main content

Advertisement

Log in

Wnt signaling: a double-edged sword in protecting bone from cancer

  • Invited Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Wnt signaling plays a critical role in loading-driven bone formation and bone homeostasis, whereas its activation in cancer cells promotes their progression. Currently, major research efforts in cancer treatment have been directed to the development of Wnt inhibitors. Recent studies on tumor–bone interactions, however, presented multiple lines of evidence that support a tumor-suppressive role of Lrp5, a Wnt co-receptor, and β-catenin, in Wnt signaling. This review describes the action of Wnt signaling as a double-edged sword in the bone microenvironment and suggests the possibility of a novel option for protecting bone from cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ritter J, Bielack SS (2010) Osteosarcoma. Ann Oncol 21:vii320-325

    Article  PubMed  Google Scholar 

  2. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, Goncalves F (2017) Bone metastases: an overview. Oncol Rev 11:321

    PubMed  PubMed Central  Google Scholar 

  3. Kimura Y, Matsugaki A, Sekita A, Nakano T (2017) Alteration of osteoblast arrangement via direct attack by cancer cells: new insights into bone metastasis. Sci Rep 7:44824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsugaki A, Kimura Y, Watanabe R, Nakamura F, Takehana R, Nakano T (2021) Impaired alignment of bone matrix microstructure associated with disorganized osteoblast arrangement in malignant melanoma metastasis. Biomolecules 11:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang K, Wu F, Seo BR, Fischbach C, Chen W, Hsu L, Gourdon D (2017) Breast cancer cells alter the dynamics of stromal fibronectin–collagen interactions. Matrix Biol 60–61:86–95

    Article  PubMed  Google Scholar 

  6. Madden EC, Gorman AM, Logue SE, Samali A (2020) Tumour cell secretome in chemoresistance and tumour recurrence. Trends Cancer 6:489–505

    Article  CAS  PubMed  Google Scholar 

  7. Yan BX, Ma JX, Zhang J, Guo Y, Riedel H, Mueller MD, Remick SC, Yu JJ (2014) PSP94 contributes to chemoresistance and its peptide derivative PCK3145 represses tumor growth in ovarian cancer. Oncogene 33:5288–5294

    Article  CAS  PubMed  Google Scholar 

  8. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746

    Article  PubMed  PubMed Central  Google Scholar 

  9. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  10. Heubel B, Nohe A (2021) The role of BMP signaling in osteoclast regulation. J Dev Biol 9:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silvestrini G, Ballanti P, Leopizzi M, Gualtieri N, Sardella D, Monnazzi P, Simeoni S, Sebastiani M, Bonucci E, Patacchioli FR (2007) Effects of the administration of corticosterone, parathyroid hormone, or both, and of their withdrawal, on rat bone and cartilage histomorphometric parameters, and on osteoprotegerin and RANKL mRNA expression and proteins. J Mol Histol 38:215–226

    Article  CAS  PubMed  Google Scholar 

  12. Wright HL, McCarthy HS, Middleton J, Marshall MJ (2009) RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med 2:56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khazai N, Judd SE, Tangpricha V (2008) Calcium and vitamin D: skeletal and extraskeletal health. Curr Rheumatol Rep 10:110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin RB (2007) The importance of mechanical loading in bone biology and medicine. J Musculoskelet Neuronal Interact 7:48–53

    CAS  PubMed  Google Scholar 

  15. Michael Delaine-Smith R, Javaheri B, Helen Edwards J, Vazquez M, Rumney RM (2015) Preclinical models for in vitro mechanical loading of bone-derived cells. Bonekey Rep 4:728

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fan Y, Jalali A, Chen A, Zhao X, Liu S, Teli M, Guo Y, Li F, Li J, Siegel A, Yang L, Liu J, Na S, Agarwal M, Robling AG, Nakshatri H, Li BY, Yokota H (2020) Skeletal loading regulates breast cancer-associated osteolysis in a loading intensity-dependent fashion. Bone Res 8:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tong X, Chen X, Zhang S, Huang M, Shen X, Xu J, Zou J (2019) The effect of exercise on the prevention of osteoporosis and bone angiogenesis. Biomed Res Int 2019:8171897

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yao Z, Lafage-Proust MH, Plouët J, Bloomfield S, Alexandre C, Vico L (2004) Increase of both angiogenesis and bone mass in response to exercise depends on VEGF. J Bone Miner Res 19:1471–1480

    Article  CAS  PubMed  Google Scholar 

  19. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875

    Article  CAS  PubMed  Google Scholar 

  21. Knothe Tate ML, Adamson JR, Tami AE, Bauer TW (2004) The osteocyte. Int J Biochem Cell Biol 36:1–8

    Article  CAS  PubMed  Google Scholar 

  22. Tresguerres FGF, Torres J, López-Quiles J, Hernández G, Vega JA, Tresguerres IF (2020) The osteocyte: a multifunctional cell within the bone. Ann Anat 227:151422

    Article  CAS  PubMed  Google Scholar 

  23. Bonewald LF (2006) Mechanosensation and transduction in osteocytes. Bonekey Osteovision 3:7–15

    Article  PubMed  PubMed Central  Google Scholar 

  24. Monteiro DA, Dole NS, Campos JL, Kaya S, Schurman CA, Belair CD, Alliston T (2021) Fluid shear stress generates a unique signaling response by activating multiple TGFβ family type I receptors in osteocytes. Faseb J 35:e21263

    Article  CAS  PubMed  Google Scholar 

  25. Fritton SP, Weinbaum S (2009) Fluid and solute transport in bone: flow-induced mechanotransduction. Annu Rev Fluid Mech 41:347–374

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jin J, Bakker AD, Wu G, Klein-Nulend J, Jaspers RT (2019) Physicochemical niche conditions and mechanosensing by osteocytes and myocytes. Curr Osteoporos Rep 17:235–249

    Article  PubMed  PubMed Central  Google Scholar 

  27. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54:182–190

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887

    Article  CAS  PubMed  Google Scholar 

  29. Koide M, Kobayashi Y (2019) Regulatory mechanisms of sclerostin expression during bone remodeling. J Bone Miner Metab 37:9–17

    Article  CAS  PubMed  Google Scholar 

  30. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X, He L (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 24:1651–1661

    Article  CAS  PubMed  Google Scholar 

  31. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36:1461–1473

    Article  CAS  PubMed  Google Scholar 

  32. Katoh M (2017) Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol 51:1357–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watanabe O, Imamura H, Shimizu T, Kinoshita J, Okabe T, Hirano A, Yoshimatsu K, Konno S, Aiba M, Ogawa K (2004) Expression of twist and wnt in human breast cancer. Anticancer Res 24:3851–3856

    CAS  PubMed  Google Scholar 

  34. Li S, Wang C, Liu X, Hua S, Liu X (2015) The roles of AXIN2 in tumorigenesis and epigenetic regulation. Fam Cancer 14:325–331

    Article  CAS  PubMed  Google Scholar 

  35. Singla A, Wang J, Yang R, Geller DS, Loeb DM, Hoang BH (2020) Wnt signaling in osteosarcoma. Adv Exp Med Biol 1258:125–139

    Article  CAS  PubMed  Google Scholar 

  36. Katoh M (2018) Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (review). Int J Mol Med 42:713–725

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev 62:50–60

    Article  CAS  PubMed  Google Scholar 

  38. Li KX, Sun X, Li BY, Yokota H (2021) Conversion of osteoclasts into bone-protective. Tumor-suppressing cells, Cancers (Basel), p 13

    Google Scholar 

  39. Liu S, Wu D, Sun X, Fan Y, Zha R, Jalali A, Feng Y, Li K, Sano T, Vike N, Li F, Rispoli J, Sudo A, Liu J, Robling A, Nakshatri H, Li BY, Yokota H (2021) Overexpression of Lrp5 enhanced the anti-breast cancer effects of osteocytes in bone. Bone Res 9:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sano T, Sun X, Feng Y, Liu S, Hase M, Fan Y, Zha R, Wu D, Aryal UK, Li BY, Sudo A, Yokota H (2021) Inhibition of the growth of breast cancer-associated brain tumors by the osteocyte-derived conditioned medium. Cancers (Basel) 13:1061

    Article  CAS  PubMed  Google Scholar 

  41. Sun X, Li K, Hase M, Zha R, Feng Y, Li BY, Yokota H (2022) Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling. Theranostics 12:929–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun X, Li K, Zha R, Liu S, Fan Y, Wu D, Hase M, Aryal UK, Lin CC, Li BY, Yokota H (2021) Preventing tumor progression to the bone by induced tumor-suppressing MSCs. Theranostics 11:5143–5159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ren Q, Chen J, Liu Y (2021) LRP5 and LRP6 in Wnt signaling: similarity and divergence. Front Cell Dev Biol 9:670960

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu S, Sun X, Li K, Zha R, Feng Y, Sano T, Dong C, Liu Y, Aryal UK, Sudo A, Li BY, Yokota H (2021) Generation of the tumor-suppressive secretome from tumor cells. Theranostics 11:8517–8534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Becker A, Riet IV (2016) Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells 8:73–87

    Article  PubMed  PubMed Central  Google Scholar 

  46. Beer L, Mildner M, Gyöngyösi M, Ankersmit HJ (2016) Peripheral blood mononuclear cell secretome for tissue repair. Apoptosis 21:1336–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen Q, Fang X, Jiang C, Yao N, Fang X (2015) Thrombospondin promoted anti-tumor of adenovirus-mediated calreticulin in breast cancer: relationship with anti-CD47. Biomed Pharmacother 73:109–115

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki S, Kulkarni AB (2010) Extracellular heat shock protein HSP90beta secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-beta1. Biochem Biophys Res Commun 398:525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fornetti J, Welm AL, Stewart SA (2018) Understanding the bone in cancer metastasis. J Bone Miner Res 33:2099–2113

    Article  CAS  PubMed  Google Scholar 

  50. Baek YH, Jeon HL, Oh IS, Yang H, Park J, Shin JY (2019) Incidence of skeletal-related events in patients with breast or prostate cancer-induced bone metastasis or multiple myeloma: a 12-year longitudinal nationwide healthcare database study. Cancer Epidemiol 61:104–110

    Article  PubMed  Google Scholar 

  51. Invernizzi M, Kim J, Fusco N (2020) Editorial: quality of life in breast cancer patients and survivors. Front Oncol 10:620574

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maurizi A, Rucci N (2018) The osteoclast in bone metastasis: player and target. Cancers (Basel) 10:218

    Article  PubMed  Google Scholar 

  53. Wang L, Fang D, Xu J, Luo R (2020) Various pathways of zoledronic acid against osteoclasts and bone cancer metastasis: a brief review. BMC Cancer 20:1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bogatcheva NV, Coleman ME (2019) Conditioned medium of mesenchymal stromal cells: a new class of therapeutics. Biochemistry (Mosc) 84:1375–1389

    Article  CAS  PubMed  Google Scholar 

  55. Nair R, Westin J (2020) CAR T-cells. Adv Exp Med Biol 1244:215–233

    Article  CAS  PubMed  Google Scholar 

  56. García-Velázquez L, López-Carrasco P, Arias C (2022) Age-dependent changes in Wnt signaling components and synapse number are differentially affected between brain regions. Exp Gerontol 165:111854

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from NIH R03CA238555 and 100 Voices of Hope (HY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Yokota.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, K., Li, BY. et al. Wnt signaling: a double-edged sword in protecting bone from cancer. J Bone Miner Metab 41, 365–370 (2023). https://doi.org/10.1007/s00774-022-01363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01363-1

Keywords

Navigation