Skip to main content

Advertisement

Log in

Effects of bazedoxifene and low-intensity aerobic exercise on bone and fat parameters in ovariectomized rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Postmenopausal osteoporosis and dyslipidemia are well-known skeletal and metabolic changes in middle-aged women. We investigated the effects of combined treatments with a selective estrogen receptor modulator (SERM) and exercise on bone and fat parameters in ovariectomized (OVX) rats.

Materials and Methods

Sixteen-week-old female Sprague–Dawley rats underwent bilateral ovariectomy, and rats were randomized to BZA (bazedoxifene at 0.3 mg/kg/day), Exe (treadmill exercise at 12–15 m/min, 60 min/day, 5 days/week), Comb (BZA and Exe), and Cont (control treated with vehicle and no exercise) groups 8 weeks after ovariectomy. After 4 or 8 weeks of treatment, bone mineral density (BMD) of the total femur and lumbar spine and whole-body percentage fat mass were determined by dual-energy X-ray absorptiometry, and mechanical testing of the femoral shaft, and bone and fat histomorphometric analyses of the proximal tibia were performed.

Results

Treadmill exercise had decreased bone marrow adipocytes from 4 weeks of treatment and whole-body percentage fat mass at 8 weeks. BZA increased BMD at the lumbar spine and decreased the whole-body percentage fat mass from 4 weeks and bone marrow adipocytes at 8 weeks. Combination therapy increased BMD for the lumbar spine and decreased bone marrow adipocytes and whole-body percentage fat mass from 4 weeks.

Conclusion

Combination therapy with BZA and exercise appears effective to improve bone and fat parameters in OVX rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al-Sari UA, Tobias J, Clark E (2016) Health-related quality of life in older people with osteoporotic vertebral fractures: a systematic review and meta-analysis. Osteoporos Int 27:2891–2900

    Article  CAS  Google Scholar 

  2. Nguyen ND, Center JR, Eisman JA, Nguyen TV (2007) Bone loss, weight loss, and weight fluctuation predict mortality risk in elderly men and women. J Bone Miner Res 22:1147–1154

    Article  Google Scholar 

  3. Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561

    Article  CAS  Google Scholar 

  4. Windler EE, Kovanen PT, Chao YS, Brown MS, Havel RJ, Goldstein JL (1980) The estradiol-stimulated lipoprotein receptor of rat liver. A binding site that membrane mediates the uptake of rat lipoproteins containing apoproteins B and E. J Biol Chem 255:10464–10471

    CAS  PubMed  Google Scholar 

  5. Ikenoue N, Wakatsuki A, Okatani Y (1999) Small low-density lipoprotein particles in women with natural or surgically induced menopause. Obstet Gynecol 93:566–570

    CAS  PubMed  Google Scholar 

  6. Parhami F, Jackson SM, Tintut Y, Le V, Balucan JP, Territo M, Demer LL (1999) Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res 14:2067–2078

    Article  CAS  Google Scholar 

  7. Yamaguchi M, Kotani K, Tsuzaki K, Takagi A, Motokubota N, Komai N, Sakane N, Moritani T, Nagai N (2015) Circadian rhythm genes CLOCK and PER3 polymorphisms and morning gastric motility in humans. PLoS One 10:e0120009

    Article  Google Scholar 

  8. Itabashi A, Yoh K, Chines AA, Miki T, Takada M, Sato H, Gorai I, Sugimoto T, Mizunuma H, Ochi H, Constantine GD, Ohta H (2011) Effects of bazedoxifene on bone mineral density, bone turnover, and safety in postmenopausal Japanese women with osteoporosis. J Bone Miner Res 26:519–529

    Article  CAS  Google Scholar 

  9. Saito M, Kida Y, Nishizawa T, Arakawa S, Okabe H, Seki A, Marumo K (2015) Effects of 18-month treatment with bazedoxifene on enzymatic immature and mature cross-links and non-enzymatic advanced glycation end products, mineralization, and trabecular microarchitecture of vertebra in ovariectomized monkeys. Bone 81:573–580

    Article  CAS  Google Scholar 

  10. Kim JH, Meyers MS, Khuder SS, Abdallah SL, Muturi HT, Russo L, Tate CR, Hevener AL, Najjar SM, Leloup C, Mauvais-Jarvis F (2014) Tissue-selective estrogen complexes with bazedoxifene prevent metabolic dysfunction in female mice. Mol Metab 3:177–190

    Article  Google Scholar 

  11. Barengolts EI, Lathon PV, Curry DJ, Kukreja SC (1994) Effects of endurance exercise on bone histomorphometric parameters in intact and ovariectomized rats. Bone Miner 26:133–140

    Article  CAS  Google Scholar 

  12. McNerny EMB, Gardinier JD, Kohn DH (2015) Exercise increases pyridinoline cross-linking and counters the mechanical effects of concurrent lathyrogenic treatment. Bone 81:327–337

    Article  CAS  Google Scholar 

  13. Ginsburg GS, Agil A, O’Toole M, Rimm E, Douglas PS, Rifai N (1996) Effects of a single bout of ultraendurance exercise on lipid levels and susceptibility of lipids to peroxidation in triathletes. JAMA 276:221–225

    Article  CAS  Google Scholar 

  14. Styner M, Pagnotti GM, McGrath C, Wu X, Sen B, Uzer G, Xie Z, Zong X, Styner MA, Rubin CT, Rubin J (2017) Exercise decreases marrow adipose tissue through ß-oxidation in obese running mice. J Bone Miner Res 32:1692–1702

    Article  CAS  Google Scholar 

  15. Kharode Y, Bodine PV, Miller CP, Lyttle CR, Komm BS (2008) The pairing of a selective estrogen receptor modulator, bazedoxifene, with conjugated estrogens as a new paradigm for the treatment of menopausal symptoms and osteoporosis prevention. Endocrinology 149:6084–6091

    Article  CAS  Google Scholar 

  16. Komm BS, Vlasseros F, Samadfam R, Chouinard L, Smith SY (2011) Skeletal effects of bazedoxifene paired with conjugated estrogens in ovariectomized rats. Bone 49:376–386

    Article  CAS  Google Scholar 

  17. Miyakoshi N, Fujii M, Kasukawa Y, Shimada Y (2018) Impact of vitamin C on teriparatide treatment in the improvement of bone mineral density, strength, and quality in vitamin C-deficient rats. J Bone Miner Metab 37:411–418. https://doi.org/10.1007/s00774-018-0941-0

    Article  CAS  PubMed  Google Scholar 

  18. Segawa T, Miyakoshi N, Kasukawa Y, Aonuma H, Tsuchie H, Shimada Y (2016) Combined treatment with minodronate and vitamin C increases bone mineral density and strength in vitamin C-deficient rats. Osteoporos Sarcopenia 2:30–37

    Article  Google Scholar 

  19. Miyakoshi N, Sato K, Yoshida S, Abe T (1997) Bone-loss pattern of corticosteroid-induced osteopenia in rats: a node-strut analysis of the tibia. J Bone Miner Metab 15:94–99

    Article  Google Scholar 

  20. Kawano T, Miyakoshi N, Kasukawa Y, Hongo M, Tsuchie H, Sato C, Fujii M, Suzuki M, Akagawa M, Ono Y, Yuasa Y, Nagahata I, Shimada Y (2017) Effects of combined therapy of alendronate and low-intensity pulsed ultrasound on metaphyseal bone repair after osteotomy in the proximal tibia of glucocorticoid-induced osteopenia rats. Osteoporos Sarcopenia 3:185–191

    Article  Google Scholar 

  21. Nozaka K, Miyakoshi N, Kasukawa Y, Maekawa S, Noguchi H, Shimada Y (2008) Intermittent administration of human parathyroid hormone enhances bone formation and union at the site of cancellous bone osteotomy in normal and ovariectomized rats. Bone 42:90–97

    Article  CAS  Google Scholar 

  22. Murata K, Yano E (2002) Medical statistics for evidence-based medicine with SPBS user’s guide. Nankodo, Tokyo

    Google Scholar 

  23. Benayahu D, Shur I, Ben-Eliyahu S (2000) Hormonal changes affect the bone and bone marrow cells in a rat model. J Cell Biochem 79:407–415

    Article  CAS  Google Scholar 

  24. Syed FA, Oursler MJ, Hefferanm TE, Peterson JM, Riggs BL, Khosla S (2008) Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int 19:1323–1330

    Article  CAS  Google Scholar 

  25. Cohen A, Dempster DW, Stein EM, Nickolas TL, Zhou H, McMahon DJ, Müller R, Kohler T, Zwahlen A, Lappe JM, Young P, Recker RR, Shane E (2012) Increased marrow adiposity in premenopausal women with idiopathic osteoporosis. J Clin Endocrinol Metab 97:2782–2791

    Article  CAS  Google Scholar 

  26. Devlin MJ (2011) Why does starvation make bones fat? Am J Hum Biol 23:577–585

    Article  Google Scholar 

  27. Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, Case N, Xie Z, Sen B, Romaine A, Pagnotti GM, Rubin CT, Styner MA, Horowitz MC, Rubin J (2014) Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone 64:39–46

    Article  Google Scholar 

  28. David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A (2007) Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148:2553–2562

    Article  CAS  Google Scholar 

  29. Menuki K, Mori T, Sakai A, Sakuma M, Okimoto N, Shimizu Y, Kunugita N, Nakamura T (2008) Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells. Bone 43:613–620

    Article  CAS  Google Scholar 

  30. Case N, Thomas J, Xie Z, Sen B, Styner M, Rowe D, Rubin J (2013) Mechanical input restrains PPARγ2 expression and action to preserve mesenchymal stem cell multipotentiality. Bone 52:454–464

    Article  CAS  Google Scholar 

  31. Marędziak M, Śmieszek A, Chrząstek K, Basinska K, Marycz K (2015) Physical activity increases the total number of bone-marrow-derived mesenchymal stem cells, enhances their osteogenic potential, and inhibits their adipogenic properties. Stem Cells Int 2015:379093

    Article  Google Scholar 

  32. Imai Y, Youn MY, Inoue K, Takada I, Kouzmenko A, Kato S (2013) Nuclear receptors in bone physiology and diseases. Physiol Rev 93:481–523

    Article  CAS  Google Scholar 

  33. Lama A, Santoro A, Corrado B, Pirozzi C, Paciello O, Pagano TB, Russo S, Calignano A, Mattace Raso G, Meli R (2017) Extracorporeal shock waves alone or combined with raloxifene promote bone formation and suppress resorption in ovariectomized rats. PLoS One 12:e0171276

    Article  Google Scholar 

  34. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS (2000) Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA 97:12729–12734

    Article  CAS  Google Scholar 

  35. Bonavera JJ, Dube MG, Kalra PS, Kalra SP (1994) Anorectic effects of estrogen may be mediated by decreased neuropeptide-Y release in the hypothalamic paraventricular nucleus. Endocrinology 134:2367–2370

    Article  CAS  Google Scholar 

  36. Misso ML, Jang C, Adams J, Tran J, Murata Y, Bell R, Boon WC, Simpson ER, Davis SR (2005) Differential expression of factors involved in fat metabolism with age and the menopause transition. Maturitas 51:299–306

    Article  CAS  Google Scholar 

  37. Meli R, Pacilio M, Raso GM, Esposito E, Coppola A, Nasti A, Di Carlo C, Nappi C, Di Carlo R (2004) Estrogen and raloxifene modulate leptin and its receptor in hypothalamus and adipose tissue from ovariectomized rats. Endocrinology 145:3115–3121

    Article  CAS  Google Scholar 

  38. Barrera J, Chambliss KL, Ahmed M, Tanigaki K, Thompson B, McDonald JG, Mineo C, Shaul PW (2014) Bazedoxifene and conjugated estrogen prevent diet-induced obesity, hepatic steatosis, and type 2 diabetes in mice without impacting the reproductive tract. Am J Physiol Endocrinol Metab 307:E345–E354

    Article  CAS  Google Scholar 

  39. Stringhetta-Garcia CT, Singulani MP, Santos LF, Louzada MJ, Nakamune AC, Chaves-Neto AH, Rossi AC, Ervolino E, Dornelles RC (2016) The effects of strength training and raloxifene on bone health in aging ovariectomized rats. Bone 85:45–54

    Article  CAS  Google Scholar 

  40. Zhao C, Hou H, Chen Y, Lv K (2016) Effect of aerobic exercise and raloxifene combination therapy on senile osteoporosis. J Phys Ther Sci 28:1791–1794

    Article  Google Scholar 

  41. Barengolts EI, Curry DJ, Bapna MS, Kukreja SC (1993) Effects of endurance exercise on bone mass and mechanical properties in intact and ovariectomized rats. J Bone Miner Res 8:937–942

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Matsuzawa and Ms. Kudo for their support in performing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohisa Miyakoshi.

Ethics declarations

Conflict of interest

All the authors have no conflict of interest.

Ethical approval

The protocols for all animal experiments were approved in advance by the Animal Research Committee of our institute, and all subsequent animal experiments adhered to the “Guidelines for Animal Experimentation” of our university (approval number: a-1-2827).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuasa, Y., Miyakoshi, N., Kasukawa, Y. et al. Effects of bazedoxifene and low-intensity aerobic exercise on bone and fat parameters in ovariectomized rats. J Bone Miner Metab 38, 179–187 (2020). https://doi.org/10.1007/s00774-019-01045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-019-01045-5

Keywords

Navigation