Skip to main content

Advertisement

Log in

Single-dose local administration of parathyroid hormone (1–34, PTH) with β-tricalcium phosphate/collagen (β-TCP/COL) enhances bone defect healing in ovariectomized rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Parathyroid hormone (1–34, PTH) combined β-tricalcium phosphate (β-TCP) achieves stable bone regeneration without cell transplantation in previous studies. Recently, with the development of tissue engineering slow release technology, PTH used locally to promote bone defect healing become possible. This study by virtue of collagen with a combination of drugs and has a slow release properties, and investigated bone regeneration by β-TCP/collagen (β-TCP/COL) with the single local administration of PTH. After the creation of a rodent critical-sized femoral metaphyseal bone defect, β-TCP/COL was prepared by mixing sieved granules of β-TCP and atelocollagen for medical use, then β-TCP/COL with dripped PTH solution (1.0 µg) was implanted into the defect of OVX rats until death at 4 and 8 weeks. The defected area in distal femurs of rats was harvested for evaluation by histology, micro-CT, and biomechanics. The results of our study show that single-dose local administration of PTH combined local usage of β-TCP/COL can increase the healing of defects in OVX rats. Furthermore, treatments with single-dose local administration of PTH and β-TCP/COL showed a stronger effect on accelerating the local bone formation than β-TCP/COL used alone. The results from our study demonstrate that combination of single-dose local administration of PTH and β-TCP/COL had an additive effect on local bone formation in osteoporosis rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ström O, Borgström F, Kanis John A, Compston Juliet, Cooper Cyrus, McCloskey Eugene V, Jönsson B (2011) Osteoporosis: burden, health care provision and opportunities in the EU: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 6:59–155

    Article  PubMed  Google Scholar 

  2. Prevention NCDPoO (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA J Am Med Assoc 285:785–795

    Article  Google Scholar 

  3. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, Rizzoli R (2008) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 19:399–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reginster JY (2011) Antifracture efficacy of currently available therapies for postmenopausal osteoporosis. Drugs 71:65–78

    Article  CAS  PubMed  Google Scholar 

  5. Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R (2010) Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the american society for bone and mineral research. J Bone Miner Res 25:2267–2294

    Article  PubMed  Google Scholar 

  6. Mccann RM, Colleary G, Geddis C, Clarke SA, Jordan GR, Dickson GR, Marsh D (2008) Effect of osteoporosis on bone mineral density and fracture repair in a rat femoral fracture model. J Orthop Res 26:384–393

    Article  Google Scholar 

  7. Hao YJ, Zhang G, Wang YS, Qin L, Hung WY, Leung K, Pei FX (2007) Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. Bone 41:631–638. https://doi.org/10.1016/j.bone.2007.06.006

    Article  Google Scholar 

  8. Tao ZS, Zhou WS, Tu KK, Huang ZL, Zhou Q, Sun T, Lv YX, Cui W, Yang L (2015) The effects of combined human parathyroid hormone (1–34) and simvastatin treatment on osseous integration of hydroxyapatite-coated titanium implants in the femur of ovariectomized rats. Injury 46:2164–2169. https://doi.org/10.1016/j.injury.2015.08.034

    Article  PubMed  Google Scholar 

  9. Tao ZS, Lv YX, Cui W, Huang ZL, Tu KK, Zhou Q, Sun T, Yang L (2016) Effect of teriparatide on repair of femoral metaphyseal defect in ovariectomized rats. Z Gerontol Geriatr 49:423–428

    Article  PubMed  Google Scholar 

  10. Tao ZS, Zhou WS, Tu KK, Huang ZL, Zhou Q, Sun T, Lv YX, Cui W, Yang L (2015) Effect exerted by teriparatide upon repair function of beta-tricalcium phosphate to ovariectomised rat’s femoral metaphysis defect caused by osteoporosis. Injury 46:2134–2141. https://doi.org/10.1016/j.injury.2015.07.042

    Article  PubMed  Google Scholar 

  11. Zacchetti G, Dayer R, Rizzoli R, Ammann P (2014) Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. Biomed Res Int 2014:549785. https://doi.org/10.1155/2014/549785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tao ZS, Tu KK, Huang ZL, Zhou Q, Sun T, Xu HM, Zhou YL, Lv YX, Cui W, Yang L (2015) Combined treatment with parathyroid hormone (1–34) and beta-tricalcium phosphate had an additive effect on local bone formation in a rat defect model. Med Biol Eng Comput. https://doi.org/10.1007/s11517-015-1402-8

    Article  Google Scholar 

  13. Tao ZS, Zhou WS, Tu KK, Huang ZL, Zhou Q, Sun T, Lv YX, Cui W, Yang L (2015) Treatment study of distal femur for parathyroid hormone (1–34) and beta-tricalcium phosphate on bone formation in critical-sized defects in osteopenic rats. J Craniomaxillofac Surg Off Publ Eur Assoc Craniomaxillofac Surg 43:2136–2143. https://doi.org/10.1016/j.jcms.2015.09.004

    Article  Google Scholar 

  14. Tao ZS, Qiang Z, Tu KK, Huang ZL, Xu HM, Sun T, Lv YX, Cui W, Yang L (2015) Treatment study of distal femur for parathyroid hormone (1–34) and beta-tricalcium phosphate on bone formation in critical size defects in rats. J Biomater Appl 30:484–491. https://doi.org/10.1177/0885328215592854

    Article  CAS  Google Scholar 

  15. Yu X, Wang L, Jiang X, Rowe D, Wei M (2012) Biomimetic CaP coating incorporated with parathyroid hormone improves the osseointegration of titanium implant. J Mater Sci Mater Med 23:2177–2186

    Article  CAS  PubMed  Google Scholar 

  16. Mohseni M, Jahandideh A, Abedi G, Akbarzadeh A, Hesaraki S (2017) Assessment of tricalcium phosphate/collagen (TCP/collagene)nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2017.1324463

  17. Tao ZS, Bai BL, He XW, Liu W, Li H, Zhou Q, Sun T, Huang ZL, Tu KK, Lv YX, Cui W, Yang L (2016) A comparative study of strontium-substituted hydroxyapatite coating on implant’s osseointegration for osteopenic rats. Med Biol Eng Comput. https://doi.org/10.1007/s11517-016-1494-9

    Article  PubMed  Google Scholar 

  18. Tao ZS, Zhou WS, He XW, Liu W, Bai BL, Zhou Q, Huang ZL, Tu KK, Li H, Sun T, Lv YX, Cui W, Yang L (2016) A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater Sci Eng C Mater Biol Appl 62:226–232. https://doi.org/10.1016/j.msec.2016.01.034

    Article  CAS  Google Scholar 

  19. Zhang Y, Cheng N, Miron R, Shi B, Cheng X (2012) Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects. Biomaterials 33:6698–6708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Wu C, Luo T, Li S, Cheng X, Miron RJ (2012) Synthesis and inflammatory response of a novel silk fibroin scaffold containing BMP7 adenovirus for bone regeneration. Bone 51:704–713

    Article  CAS  PubMed  Google Scholar 

  21. Yang N, Cui Y, Tan J, Fu X, Han X, Leng H, Song C (2014) Local injection of a single dose of simvastatin augments osteoporotic bone mass in ovariectomized rats. J Bone Miner Metab 32:252–260. https://doi.org/10.1007/s00774-013-0496-z

    Article  CAS  PubMed  Google Scholar 

  22. Bone HG, Greenspan SL, Mckeever C, Bell N, Davidson M, Downs RW, Emkey R, Meunier PJ, Miller SS, Mulloy AL (2000) Alendronate and estrogen effects in postmenopausal women with low bone mineral density. Alendronate/Estrogen Study Group. J Clin Endocr Metab 85:720–726

    CAS  PubMed  Google Scholar 

  23. Tao ZS, Lv YX, Cui W, Huang ZL, Tu KK, Zhou Q, Sun T, Yang L (2015) Effect of teriparatide on repair of femoral metaphyseal defect in ovariectomized rats. Z Gerontol Geriatr. https://doi.org/10.1007/s00391-015-0949-1

    Article  PubMed  Google Scholar 

  24. Comelekoglu U, Bagis S, Yalin S, Ogenler O, Yildiz A, Sahin NO, Oguz I, Hatungil R (2007) Biomechanical evaluation in osteoporosis: ovariectomized rat model. Clin Rheumatol 26:380–384. https://doi.org/10.1007/s10067-006-0367-2

    Article  PubMed  Google Scholar 

  25. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529

    Article  CAS  Google Scholar 

  26. Li Q, Wang T, Zhang G, Yu X, Zhang J, Zhou G, Tang Z (2016) A comparative evaluation of the mechanical properties of two calcium phosphate/collagen composite materials and their osteogenic effects on adipose-derived stem cells. Stem Cells Int 1–12. https://doi.org/10.1155/2016/6409546

  27. Dorozhkin SV (2013) Calcium orthophosphates in dentistry. J Mater Sci Mater Med 24:1335

    Article  CAS  PubMed  Google Scholar 

  28. Chevallay B, Herbage D (2000) Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput 38:211–218

    Article  CAS  PubMed  Google Scholar 

  29. Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, Van RJ, Deryugina E, Friedl P (2009) Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 20:931–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanda N, Matsui K, Kawai T, Edamatsu H, Tanuma Y, Suzuki O, Takahashi T, Kamakura S (2016) Implantation of octacalcium phosphate collagen composites (OCP/Col) after extraction of canine deciduous teeth achieved undisturbed permanent tooth eruption. Arch Oral Biol 72:179

    Article  CAS  PubMed  Google Scholar 

  31. Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ (2006) Bone graft materials and synthetic substitutes. Radiol Clin N Am 44:451–461

    Article  PubMed  Google Scholar 

  32. Meganck JA, Koh AJ, Keller ET (2008) Parathyroid hormone mediates bone growth through the regulation of osteoblast proliferation and differentiation. Bone 42:806–818

    Article  CAS  PubMed  Google Scholar 

  33. Komrakova M, Stuermer EK, Werner C, Wicke M, Kolios L, Sehmisch S, Tezval M, Daub F, Martens T, Witzenhausen P (2010) Effect of human parathyroid hormone hPTH (1–34) applied at different regimes on fracture healing and muscle in ovariectomized and healthy rats. Bone 47:480–492

    Article  CAS  PubMed  Google Scholar 

  34. Andreassen TT, Fledelius C, Ejersted C, Oxlund H (2001) Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand 72:304–307

    Article  CAS  PubMed  Google Scholar 

  35. Nozaka K, Miyakoshi N, Kasukawa Y, Maekawa S, Noguchi H, Shimada Y (2008) Intermittent administration of human parathyroid hormone enhances bone formation and union at the site of cancellous bone osteotomy in normal and ovariectomized rats. Bone 42:90–97

    Article  CAS  PubMed  Google Scholar 

  36. Nakajima A, Shimoji N, Shiomi K, Shimizu S, Moriya H, Einhorn TA (2002) Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1–34). J Bone Miner Res 17:2038–2047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the natural science foundation for education department of Anhui Province (Grant no. KJ2017A266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-Shan Tao.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, ZS., Zhou, WS., Wu, XJ. et al. Single-dose local administration of parathyroid hormone (1–34, PTH) with β-tricalcium phosphate/collagen (β-TCP/COL) enhances bone defect healing in ovariectomized rats. J Bone Miner Metab 37, 28–35 (2019). https://doi.org/10.1007/s00774-018-0906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-018-0906-3

Keywords

Navigation