Skip to main content
Log in

Impact of flow shear stress on morphology of osteoblast-like IDG-SW3 cells

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

This study constructed an in situ cell culture, real-time observation system based originally on a microfluidic channel, and reported the morphological changes of late osteoblast-like IDG-SW3 cells in response to flow shear stress (FSS). The effects of high (1.2 Pa) and low (0.3 Pa) magnitudes of unidirectional FSS and three concentrations of extracellular Type I collagen (0.1, 0.5, and 1 mg/mL) coating on cell morphology were investigated. IDG-SW3 cells were cultured in polydimethylsiloxane microfluidic channels. Cell images were recorded real-time under microscope at intervals of 1 min. Cell morphology was characterized by five parameters: cellular area, cell elongation index, cellular alignment, cellular process length, and number of cellular process per cell. Immunofluorescence assay was used to detect stress fiber distribution and vinculin expression. The results showed that 1.2 Pa, but not 0.3 Pa of FSS induced a significant morphological change in late osteoblast-like IDG-SW3 cells, which may be caused by the alteration of cellular adhesion with matrix in response to FSS. Moreover, the amount of collagen matrix, alignment of fiber stress and expression of vinculin were closely correlated with the morphological changes of IDG-SW3 cells. This study suggests that osteoblasts are very responsive to the magnitudes of FSS, and extracellular collagen matrix and focal adhesion are directly involved in the morphological changes adaptive to FSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burr DB, Allen MR (2014) Basic and applied bone biology. Elsevier, London

    Google Scholar 

  2. van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2009) Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—is there a role for mechanosensing? Bone 45:321–329

    Article  PubMed  Google Scholar 

  3. Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2008) Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone 43:452–458

    Article  PubMed  Google Scholar 

  4. Lu XL, Huo B, Chiang V, Guo XE (2011) Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J Bone Miner Res 27:563–574

    Article  CAS  Google Scholar 

  5. Young SR, Hum JM, Rodenberg E, Turner CH, Pavalko FM (2011) Non-overlapping functions for pyk2 and fak in osteoblasts during fluid shear stress-induced mechanotransduction. PLoS One 6:e16026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Liu X, Zhang X, Lee I (2010) A quantitative study on morphological responses of osteoblastic cells to fluid shear stress. Acta Biochim Biophys Sin (Shanghai) 42:195–201

    Article  CAS  Google Scholar 

  7. Barron MJ, Tsai CJ, Donahue SW (2010) Mechanical stimulation mediates gene expression in mc3t3 osteoblastic cells differently in 2d and 3d environments. J Biomech Eng 132:041005

    Article  PubMed  Google Scholar 

  8. Ponik SM, Triplett JW, Pavalko FM (2007) Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles. J Cell Biochem 100:794–807

    Article  PubMed  CAS  Google Scholar 

  9. Malone AMD, Batra NN, Shivaram G, Kwon RY, You L, Kim CH, Rodriguez J, Jair K, Jacobs CR (2007) The role of actin cytoskeleton in oscillatory fluid flow-induced signaling in mc3t3-e1 osteoblasts. Am J Physiol Cell Physiol 292:C1830–C1836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Aryaei A, Jayasuriya AC (2015) The effect of oscillatory mechanical stimulation on osteoblast attachment and proliferation. Mater Sci Eng C 52:129–134

    Article  CAS  Google Scholar 

  11. You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR (2001) Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in mc3t3-e1 osteoblasts. J Biol Chem 276:13365–13371

    Article  PubMed  CAS  Google Scholar 

  12. Riddle RC, Donahue HJ (2009) From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res 27:143–149

    Article  PubMed  Google Scholar 

  13. Swan CC, Lakes RS, Brand RA, Stewart KJ (2003) Micromechanically based poroelastic modeling of fluid flow in haversian bone. J Biomech Eng 125:25–37

    Article  PubMed  CAS  Google Scholar 

  14. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    Article  PubMed  CAS  Google Scholar 

  15. Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–2164

    Article  PubMed  CAS  Google Scholar 

  16. Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5:1348–1354

    Article  PubMed  CAS  Google Scholar 

  17. Kou S, Pan L, van Noort D, Meng G, Wu X, Sun H, Xu J, Lee I (2011) A multishear microfluidic device for quantitative analysis of calcium dynamics in osteoblasts. Biochem Biophys Res Commun 408:350–355

    Article  PubMed  CAS  Google Scholar 

  18. Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF (2011) Cell line idg-sw3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res 26:2634–2646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Alenghat FJ, Ingber DE (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 119:6

    Google Scholar 

  20. Jackson WM, Jaasma MJ, Tang RY, Keaveny TM (2008) Mechanical loading by fluid shear is sufficient to alter the cytoskeletal composition of osteoblastic cells. Am J Physiol Cell Physiol 295:C1007–C1015

    Article  PubMed  CAS  Google Scholar 

  21. Carisey A, Tsang R, Greiner AM, Nijenhuis N, Heath N, Nazgiewicz A, Kemkemer R, Derby B, Spatz J, Ballestrem C (2013) Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr Biol 23:271–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Buckley MJ, Banes AJ, Levin LG, Sumpio BE, Sato M, Jordan R, Gilbert J, Link GW, Tran RST (1988) Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner 4:225–236

    PubMed  CAS  Google Scholar 

  23. Grinnell F, Ho CH, Tamariz E, Lee DJ, Skuta G (2003) Dendritic fibroblasts in three-dimensional collagen matrices. Mol Biol Cell 14:384–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60:24–34

    Article  Google Scholar 

  25. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fritton SP, Weinbaum S (2009) Fluid and solute transport in bone: flow-induced mechanotransduction. Ann Rev Fluid Mech 41:347–374

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Grants from the National Natural Science Foundation of China (81472090 & 31328016 to HX, JXJ and PS), the Fundamental Research Funds for the Central Universities (3102016ZY036 to HX), and National Institute of Health Grant (CA196214 to JXJ) and Welch Foundation Grant (AQ-1507 to JXJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiyun Xu or Jean X. Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Duan, J., Ren, L. et al. Impact of flow shear stress on morphology of osteoblast-like IDG-SW3 cells. J Bone Miner Metab 36, 529–536 (2018). https://doi.org/10.1007/s00774-017-0870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-017-0870-3

Keywords

Navigation