Skip to main content

Advertisement

Log in

Vitamin D status of Icelandic children and its influence on bone accrual

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The importance of vitamin D for children’s bone health has been well established, but the effects of less severe deficiency are not fully known. The main objective of this study was to assess the vitamin D status of Icelandic children at the age of 7, and again at 9 years of age, and the association of vitamin D status with bone mineral content and bone accrual over 2 years. We invited 321 children to participate in this study, and 267 (83 %) took part; 211 (79 %) underwent a DXA scan and 164 were again scanned 2 years later; 159 (60 %) vitamin D samples were measured and 119 (75 %) were measured again 2 years later. At age 7, 65 % of the children had vitamin D concentrations <50 nmol/l, and at age 9 this figure was 60 %. At age 7, 43 % of the children had insufficient amounts of vitamin D (37.5–50 nmol/l), and 22 % had a vitamin D deficiency (<37.5 nmol/l). In linear regression analysis, no association was found between vitamin D and bone mineral content. Furthermore, there was no significant difference in bone accrual over 2 years for the children with insufficient or deficient vitamin D at both ages, compared to those having more than 50 nmol/l at both time points. More than 60 % of Icelandic children have inadequate concentrations of vitamin D in serum repeatedly over a 2-year interval. However, vitamin D in the range did not have a significant effect on bone mineral content or accrual at ages 7 and 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

25(OH)-D:

25-Hydroxyvitamin D

BMC:

Bone mineral content

BMD:

Bone mineral density

LBM:

Lean body mass

TFM:

Total fat mass

PTH:

Parathyroid hormone

References

  1. van Driel M, Koedam M, Buurman CJ, Roelse M, Weyts F, Chiba H, Uitterlinden AG, Pols HA, van Leeuwen JP (2006) Evidence that both 1-alpha,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization. J Cell Biochem 99:922–935

    Article  PubMed  Google Scholar 

  2. DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80:1689–1696

    Google Scholar 

  3. Holick MF, MacLaughlin JA, Clark MB, Holick SA, Potts JT Jr, Anderson RR, Blank IH, Parrish JA, Elias P (1980) Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 210:203–205

    Article  CAS  PubMed  Google Scholar 

  4. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  5. Hollis BW, Wagner CL (2004) Assessment of dietary vitamin D requirements during pregnancy and lactation. Am J Clin Nutr 79:717–726

    CAS  PubMed  Google Scholar 

  6. Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M, Drug, Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society (2008) Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122:398–417

    Article  PubMed  Google Scholar 

  7. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    Article  CAS  PubMed  Google Scholar 

  8. Dawson-Hughes B, Dallal GE, Krall EA, Harris S, Sokoll LJ, Falconer G (1991) Effect of vitamin D supplementation on wintertime and overall bone loss in healthy postmenopausal women. Ann Intern Med 115:505–512

    Article  CAS  PubMed  Google Scholar 

  9. Visser M, Deeg DJ, Lips P, Longitudinal Aging Study A (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88:5766–5772

    Article  Google Scholar 

  10. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Hu FB, Zhang Y, Karlson EW, Dawson-Hughes B (2004) Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged ≥60 years. Am J Clin Nutr 80:752–758

    CAS  PubMed  Google Scholar 

  11. Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, Wong JB (2004) Effect of Vitamin D on falls: a meta-analysis. JAMA 291:1999–2006

    Article  CAS  PubMed  Google Scholar 

  12. Bouillon R (2009) Vitamin D as potential baseline therapy for blood pressure control. Am J Hypertens 22:816

    Article  CAS  PubMed  Google Scholar 

  13. Chiu KC, Chu A, Go VL, Saad MF (2004) Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 79:820–825

    CAS  PubMed  Google Scholar 

  14. Bouillon R, Eelen G, Verlinden L, Mathieu C, Carmeliet G, Verstuyf A (2006) Vitamin D and cancer. J Steroid Biochem Mol Biol 102:156–162

    Article  CAS  PubMed  Google Scholar 

  15. Gorham ED, Garland CF, Garland FC, Grant WB, Mohr SB, Lipkin M, Newmark HL, Giovannucci E, Wei M, Holick MF (2007) Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med 32:210–216

    Article  PubMed  Google Scholar 

  16. Colston KW (2008) Vitamin D and breast cancer risk. Best practice & research. Clin Endocrinol Metab 22:587–599

    CAS  Google Scholar 

  17. Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ (2004) Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med 158:531–537

    Article  PubMed  Google Scholar 

  18. Heaney RP, Dowell MS, Hale CA, Bendich A (2003) Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 22:142–146

    Article  CAS  PubMed  Google Scholar 

  19. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B (2004) Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med 116:634–639

    Article  CAS  PubMed  Google Scholar 

  20. Khadilkar AV, Sayyad MG, Sanwalka NJ, Bhandari DR, Naik S, Khadilkar VV, Mughal MZ (2010) Vitamin D supplementation and bone mass accrual in underprivileged adolescent Indian girls. Asia Pac J Clin Nutr 19:465–472

    CAS  PubMed  Google Scholar 

  21. Lehtonen-Veromaa MK, Mottonen TT, Nuotio IO, Irjala KM, Leino AE, Viikari JS (2002) Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr 76:1446–1453

    CAS  PubMed  Google Scholar 

  22. Winzenberg T, Powell S, Shaw KA, Jones G (2011) Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ 342:c7254

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mansbach JM, Ginde AA, Camargo CA Jr (2009) Serum 25-hydroxyvitamin D levels among US children aged 1 to 11 years: do children need more vitamin D? Pediatrics 124:1404–1410

    Article  PubMed Central  Google Scholar 

  24. Lips P (2007) Vitamin D status and nutrition in Europe and Asia. J Steroid Biochem Mol Biol 103:620–625

    Article  CAS  PubMed  Google Scholar 

  25. Brustad M, Sandanger T, Aksnes L, Lund E (2004) Vitamin D status in a rural population of northern Norway with high fish liver consumption. Public Health Nutr 7:783–789

    CAS  PubMed  Google Scholar 

  26. Gunnarsson O, Indriethason OS, Franzson L, Halldorsdottir E, Sigurethsson G (2004) Vitamin-D homeostasis amongst adult Icelandic population. Laeknabladid 90:29–36

    PubMed  Google Scholar 

  27. Bjarnadottir A, Kristjansdottir AG, Hrafnkelsson H, Johannsson E, Magnusson KT, Thorsdottir I (2014) Insufficient autumn vitamin D intake and low vitamin D status in 7-year-old Icelandic children. Public Health Nutr 1–10

  28. Webb AR, Kline L, Holick MF (1988) Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 67:373–378

    Article  CAS  PubMed  Google Scholar 

  29. Sullivan SS, Rosen CJ, Halteman WA, Chen TC, Holick MF (2005) Adolescent girls in Maine are at risk for vitamin D insufficiency. J Am Diet Assoc 105:971–974

    Article  CAS  PubMed  Google Scholar 

  30. Fuller KE, Casparian JM (2001) Vitamin D: balancing cutaneous and systemic considerations. South Med J 94:58–64

    Article  CAS  PubMed  Google Scholar 

  31. Lagunova Z, Porojnicu AC, Lindberg FA, Aksnes L, Moan J (2011) Vitamin D status in Norwegian children and adolescents with excess body weight. Pediatr Diabetes 12:120–126

    Article  CAS  PubMed  Google Scholar 

  32. Nicolaidou P, Kakourou T, Papadopoulou A, Kavadias G, Dimitriou E, Georgouli H, Tsapra H, Giannoulia-Karantana A, Fretzayas A, Tsiftis G, Bakoula C (2006) Low vitamin D status in preschool children in Greece. Nutr Res 26:620–625

    Article  CAS  Google Scholar 

  33. Mosekilde L, Nielsen LR, Larsen ER, Moosgaard B, Heickendorff L (2005) Vitamin D deficiency. Definition and prevalence in Denmark. Ugeskr Laeger 167:29–33

    PubMed  Google Scholar 

  34. Savolainen K, Maenpaa PH, Alhava EM, Kettunen K (1980) A seasonal difference in serum 25-hydroxyvitamin D3 in a Finnish population. Med Biol 58:49–52

    CAS  PubMed  Google Scholar 

  35. Vik T, Try K, Stromme JH (1980) The vitamin D status of man at 70 degrees north. Scand J Clin Lab Invest 40:227–232

    Article  CAS  PubMed  Google Scholar 

  36. The Icelandic Met Office 2014 [cited 2014 June 6]. Icelandic weather reports by month. Available from: http://www.vedur.is/vedur/vedurfar/manadayfirlit

  37. Hazell TJ, Pham TT, Jean-Philippe S, Finch SL, El Hayek J, Vanstone CA, Agellon S, Rodd CJ, Weiler HA (2015) Vitamin D status is associated with bone mineral density and bone mineral content in preschool-aged children. J Clin Densitometry 18:60–67

    Article  Google Scholar 

  38. Joo NS, Dawson-Hughes B, Yeum KJ (2013) 25-Hydroxyvitamin D, calcium intake, and bone mineral content in adolescents and young adults: analysis of the fourth and fifth Korea National Health and Nutrition Examination Survey (KNHANES IV-2, 3, 2008–2009 and V-1, 2010). J Clin Endocrinol Metab 98:3627–3636

    Article  CAS  PubMed  Google Scholar 

  39. Valtuena J, Gracia-Marco L, Vicente-Rodriguez G, Gonzalez-Gross M, Huybrechts I, Rey-Lopez JP, Mouratidou T, Sioen I, Mesana MI, Martinez AE, Widhalm K, Moreno LA, Group HS (2012) Vitamin D status and physical activity interact to improve bone mass in adolescents. The HELENA Study. Osteoporos Int 23:2227–2237

    Article  CAS  PubMed  Google Scholar 

  40. Stein EM, Laing EM, Hall DB, Hausman DB, Kimlin MG, Johnson MA, Modlesky CM, Wilson AR, Lewis RD (2006) Serum 25-hydroxyvitamin D concentrations in girls aged 4-8 y living in the southeastern United States. Am J Clin Nutr 83:75–81

    CAS  PubMed  Google Scholar 

  41. Pekkinen M, Viljakainen H, Saarnio E, Lamberg-Allardt C, Makitie O (2012) Vitamin D is a major determinant of bone mineral density at school age. PLoS One 7:e40090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng S, Tylavsky F, Kroger H, Karkkainen M, Lyytikainen A, Koistinen A, Mahonen A, Alen M, Halleen J, Vaananen K, Lamberg-Allardt C (2003) Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 78:485–492

    CAS  PubMed  Google Scholar 

  43. Hrafnkelsson H, Sigurdsson G, Magnusson KT, Sigurdsson EL, Johannsson E (2013) Fat mass increase in 7-year-old children: more bone area but lower bone mineral density. J Bone Miner Metab 31:442–448

    Article  PubMed  Google Scholar 

  44. Gracia-Marco L, Ortega FB, Jimenez-Pavon D, Rodriguez G, Castillo MJ, Vicente-Rodriguez G, Moreno LA (2012) Adiposity and bone health in Spanish adolescents. The HELENA study. Osteoporos Int 23:937–947

    Article  CAS  PubMed  Google Scholar 

  45. Heidemann M, Holst R, Schou AJ, Klakk H, Husby S, Wedderkopp N, Molgaard C (2015) The influence of anthropometry and body composition on children’s bone health: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark. Calcif Tissue Int 96:97–104

    Article  CAS  PubMed  Google Scholar 

  46. Pattanaungkul S, Riggs BL, Yergey AL, Vieira NE, O’Fallon WM, Khosla S (2000) Relationship of intestinal calcium absorption to 1,25-dihydroxyvitamin D [1,25(OH)2D] levels in young versus elderly women: evidence for age-related intestinal resistance to 1,25(OH)2D action. J Clin Endocrinol Metab 85:4023–4027

    CAS  PubMed  Google Scholar 

  47. Kristjansdottir AG, Thorsdottir I (2009) Adherence to food-based dietary guidelines and evaluation of nutrient intake in 7-year-old children. Public Health Nutr 12:1999–2008

    Article  PubMed  Google Scholar 

  48. Aksglaede L, Sorensen K, Petersen JH, Skakkebaek NE, Juul A (2009) Recent decline in age at breast development: the Copenhagen Puberty Study. Pediatrics 123:e932–e939

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all the participants and their families for giving their time and energy to undergo all the different measurements conducted over the course of this study. This work was supported by The Research Fund of the lcelandic College of Family Physicians, University of Iceland Research Fund, Icelandic Research Fund, and the Technology Development Fund administered by Rannis, the Icelandic Centre for Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil L. Sigurdsson.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauksson, H.H., Hrafnkelsson, H., Magnusson, K.T. et al. Vitamin D status of Icelandic children and its influence on bone accrual. J Bone Miner Metab 34, 580–586 (2016). https://doi.org/10.1007/s00774-015-0704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0704-0

Keywords

Navigation