Skip to main content
Log in

Straightforward discretisation of Green function and free-surface potential flow around a three-dimensional lifting body

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

A straightforward evaluation approach of free-surface Green function is developed to solve the potential flow around a three-dimensional lifting body. The free-surface waves generated by the movement of the lifting body is presented in an expansion of plane regular waves traveling in \(\theta \) directions with wave number magnitudes \(k>0\). A boundary element method is combined with the evaluation approach and Hess-Smith panel integral formulae to predict hydrodynamic performance of a three-dimensional lifting body. Numerical results produced by the proposed method are compared favourably with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

b :

Hydrofoil span

c :

Hydrofoil chord

C\(_d\) :

Drag coefficient

\(C_l\) :

Lift coefficient

\(C_p\) :

Pressure coefficient

\((x',y',z')\) :

Dimensional coordinates

(xyz):

Non-dimensional coordinates

\(c_{l,m}\) :

Regular wave expansion coefficients

\(\mathrm {Fn}\) :

Froude number \(U/\sqrt{gc}\)

h :

(NACA4412) Vertical distance between \(z=0\) and a mid chord point

h :

(Joukowski) Vertical distance between \(z=0\) and a trailing edge point

g :

Gravitational acceleration

G :

Free-surface Green function

\(G^\mu \) :

Dissipative free-surface Green function

\(i \) :

Pure imaginary number \(\sqrt{-1}\)

K :

Singular wave integral

\(K^\mu \) :

Regular wave integral

\({\mathbf {n}}_{i,j}\) :

Panel normal vector

\(N_c\) :

Number of panels in chordwise direction

\(N_s\) :

Number of panels in the spanwise direction

\(N_k\) :

Number of panels of \((0, k_{\mathrm {max}})\)

\((0, k_{\mathrm {max}})\) :

Approximate domain of the wave number integral domain \((0,\infty )\)

\(N_\theta \) :

Number of panels of the \(\theta \) direction domain \((-\frac{\pi }{2},\frac{\pi }{2})\)

\({\mathbf {p}}_{i,j}\) :

Panel grid points

\({\mathbf {q}}_{i,j}\) :

Panel control points

U :

Uniform stream speed

\({\mathbf {t}}_{i,j}^c\) :

Panel chordwsie tangential vector

\({\mathbf {t}}_{i,j}^s\) :

Panel spanwsie tangential vector

D :

Linearised fluid domain

\(\alpha \) :

Angle of attack

\(\mu \) :

Energy dissipation number

\(\nu \) :

Wave number \(1/{\mathrm {Fn}}^2\)

\(\phi \) :

Dimensionless perturbed velocity potential

\(\chi \) :

Wave elevation around a hydrofoil

\(\chi _s\) :

Wave elevation around a single source

References

  1. Bal S, Kinnas SA, Lee H (2001) Numerical analysis of 2-D and 3-D cavitating hydrofoils under a free surface. J Ship Res 45:34–49

    Google Scholar 

  2. Havelock TH (1928) Wave resistance. Proc R Soc Lond A 118:24–33

    Article  MATH  Google Scholar 

  3. Wehausen JV, Laitone EV (1960) Surface waves. In: Flugge S, Truesdell C (eds), Fluid Dynamics III in Handbuch der Physik 9. Springer, Berlin, pp 446–778

  4. Baar JJM, Price WG (1988) Development in the calculation of wavemaking resistance of ships. Proc R Soc Lond A 416:115–147

    Article  Google Scholar 

  5. Bessho M (1964) On the fundamental function in the theory of the wave-making resistance of ships. Mem Defense Acad Japan 6:99–119

    Google Scholar 

  6. Newman JN (1987) Evaluation of the wave-resistance Green function: Part 1. The double integral. J Ship Res 31:79–90

    Google Scholar 

  7. Hess JL, Smith AMO (1964) Calculation of nonlifting potential flow about arbitrary three-dimensional bodies. J Ship Res 8:22–44

    Google Scholar 

  8. Hess JL, Smith AMO (1966) Calculation of potential flow about arbitrary bodies. Prog Aero Sci 8:1–138

    Article  MATH  Google Scholar 

  9. Noblesse F (1981) Alternative integral representations for the Green function of the theory of ship wave resistance. J Eng Math 15:241–265

    Article  MATH  Google Scholar 

  10. Dawson CW (1977) A practical computer method for solving ship wave problems. Proceedings of 2nd International Conference on Numerical Ship Hydrodynamics. University of California, Berkeley, pp 30–38

  11. Havelock TH (1932) The theory of wave resistance. Proc R Soc Lond A 138:339–348

    Article  MATH  Google Scholar 

  12. Lighthill J (1967) On waves generated in dispersive systems by traveling forcing effects, with applications to the dynamics of rotating fluids. J Fluid Mech 27:725–752

    Article  MATH  Google Scholar 

  13. Noblesse F, Yang C (2007) Elementary water waves. J Eng Math 59:277–299

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen ZM (2012) A vortex based panel method for potential flow simulation around a hydrofoil. J fluids Strut 28:378–391

    Article  Google Scholar 

  15. Chen ZM (2013) A dissipative free-surface approach for an underwater body in a uniform stream. J Marine Sci Tech 18:182–191

    Article  Google Scholar 

  16. Chen ZM (2013) Harmonic function expansion for translating Green functions and dissipative free-surface waves. Wave Motion 50:282–294

    Article  MathSciNet  Google Scholar 

  17. Chen ZM (2014) Regular wave integral approach to the prediction of hydrodynamic performance of submerged spheroid. Wave Motion 51:193–205

    Article  MathSciNet  Google Scholar 

  18. Havelock TH (1934) Wave patterns and wave resistance. Trans Inst Naval Arch 76:430–446

    MATH  Google Scholar 

  19. Havelock TH (1934) The calculation of wave resistance. Proc R Soc A 144:514–521

    Article  MATH  Google Scholar 

  20. Inui T (1962) Wave-making resistance of ships. Presented at the Annual Meeting of The Society of Naval Architects and Marine Engineers, New York, November 15–16

  21. Tuck EO, Scullen DC, Lazauskas L (2001) Ship-wave patterns in the spirit of Michell. In: King AC, Shikhmurzaev Y (eds) IUTAM symposium on Free surface flows. Birmingham, UK, pp 311–318

    Chapter  Google Scholar 

  22. Ausman JS (1954) Pressure limitation on the upper surface of a hydrofoil. PhD thesis, University of California, Berkeley

  23. Parkin BR, Perry B, Wu TY (1956) Pressure distribution on a hydrofoil running near the water surface. J Appl Phys 27:232–240

    Article  Google Scholar 

  24. Xie N, Vassalos D (2007) Performance analysis of 3D hydrofoil under free surface. Ocean Eng 34:1257–1264

    Article  Google Scholar 

  25. Tarafder MS, Saha GK, Mehedi ST (2010) Analysis of potential flow around 3-dimensional hydrofoils by combined source and dipole based panel method. J Marine Sci Tech 18:376–384

    Google Scholar 

  26. Liang H, Sun L, Zong L, Zhou L, Zou L (2013) Analytical modelling for a three-dimensional hydrofoil with winglets operating beneath a free surface. Appl Math Model 37:2679–2701

    Article  MathSciNet  MATH  Google Scholar 

  27. Carabineanu A (2014) The study of the potential flow past a submerged hydrofoil by the complex boundary element method. Eng Anal Boun Elements 39:23–35

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang F, Yang C, Noblesse F (2013) The Neumann-Michell theory of ship waves. J Eng Math 79:5171

    MathSciNet  MATH  Google Scholar 

  29. Noblesse F, Huang F, Yang C (2013) Numerical implementation and validation of the Neumann-Michell theory of ship waves. Eur J Mech B/Fluids 42:47–68

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu H, Zhang C, Ma C, Huang F, Yang C, Noblesse F (2016) Errors due to a practical Green function for steady ship waves. Eur J Mech B/Fluids 55:162–169

    Article  MathSciNet  Google Scholar 

  31. Yeung RW, Bouger YC (1977) Hybrid integral-equation method for the steady ship-problem. In: Second International Conference on Numerical Ship Hydrodynamics, Berkeley, pp 160–175

  32. Yeung RW, Bouger YC (1979) A hybrid integral-equation method for steady two-dimensional ship waves. Int J Num Method Eng 14:317–336

    Article  MATH  Google Scholar 

  33. Nakos DE (1990) Ship wave patterns and motions by a three dimensional Rankine panel method. PhD thesis, Massachusetts Institute of Technology, Cambridge

  34. Nakos DE, Sclavounos PD (1990) On steady and unsteady ship wave patterns. J Fluid Mech 215:263–288

    Article  MathSciNet  MATH  Google Scholar 

  35. Beck RF (1994) Time-domain computations for floating bodies. Appl Ocean Res 16:267–282

    Article  Google Scholar 

  36. Longuet-Higgins M, Cokelet E (1976) The deformation of steep surface waves on water. I. a numerical method of computation. Proc R Soc Lond A 350:1–26

    Article  MathSciNet  MATH  Google Scholar 

  37. Longuet-Higgins M, Cokelet E (1978) The deformation of steep surface waves on water. II. growth of normal-mode instabilities. Proc R Soc Lond A 364:1–28

    Article  MathSciNet  MATH  Google Scholar 

  38. Newman JN (1986) Distributions of sources and normal dipoles over a quadrilateral panel. J Eng Math 20:113–126

    Article  Google Scholar 

  39. Giesing JP, Smith AMO (1967) Potential flow about two-dimensional hydrofoil. J Fluid Mech 28:113–129

    Article  Google Scholar 

  40. Forbes LK (1989) An algorithm for 3-dimensional free-surface problems in hydrodynamics. J Comput Phys 82:330–347

    Article  MathSciNet  MATH  Google Scholar 

  41. Katz J, Plotkin A (1991) Low-speed aerodynamics. McGraw-HIll Inc, New York

    MATH  Google Scholar 

  42. Raven HC (1996) A solution method for the nonlinear ship wave resistance problem. PhD thesis, Delft University of Technology, Delft

  43. Chen ZM (2014) Straightforward approximation of the translating and pulsating free surface green function. Discret Contin Dynam Syst B 19:2767–2783

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was partially supported by NSF (Grant No. 11571240) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Min Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZM., Liu, Q. & Price, W.G. Straightforward discretisation of Green function and free-surface potential flow around a three-dimensional lifting body. J Mar Sci Technol 22, 149–161 (2017). https://doi.org/10.1007/s00773-016-0400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-016-0400-3

Keywords

Navigation