Skip to main content
Log in

Medikamentenbeschichtete Ballonkatheter in der Behandlung der peripheren arteriellen Verschlusskrankheit

Entwicklung der Methode und aktuelle Studienlage

Drug-coated balloon catheters in the treatment of peripheral arterial occlusive disease

Development of methods and current level of evidence

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Trotz initial guter Erfolge nach Angioplastie bei peripherer arterieller Verschlusskrankheit (pAVK) bilden Restenosen das Hauptproblem. Sie werden durch neointimale Hyperplasie verursacht und können mithilfe antiproliferativer Substanzen effektiv unterdrückt werden. Zur längerfristigen Hemmung werden medikamentenbeschichtete Ballonkatheter („drug-coated balloon“, DCB) und -“drug-coated stents“ (DCS) eingesetzt.

Ziel der Arbeit

Die vorliegende Arbeit gibt einen Überblick über die DCB-Entwicklung, die aktuell eingesetzten Systeme und die vorliegenden klinischen Studien. Die Evidenz in der Behandlung der femoropoplitealen Arterien wird diskutiert.

Material und Methode

Es wurde eine systematische elektronische Literaturrecherche in Datenbanken medizinischer Fachzeitschriften, international registrierter klinischer Studien und publizierter Kongressbeiträge zum DCB-Einsatz im infrainguinalen Bereich im Zeitraum 2008 bis Juli 2013 durchgeführt.

Ergebnis

Hauptvorteile der DCB sind, dass kein Metall im Gefäß zurückbleibt, die unmittelbare Freisetzung hoher Substanzkonzentrationen und ihre Einsetzbarkeit in Bereichen, in denen DCS bisher kontraindiziert sind. Die klinische Evidenz der „paclitaxel drug-coated balloon“ (PTX-DCB) der 1. Generation wurde in verschiedenen kontrollierten randomisierten Studien aufgezeigt.

Schlussfolgerungen

In Abhängigkeit von der Läsionsart und dem Läsionsort sind DCB geeignet bei In-Stent-Restenosen, Restenosen oder in Bereichen der A. poplitea oder bei Seitenästen der A. profunda, in denen eine Stent-Applikation kontraindiziert ist.

Abstract

Background

Despite initially encouraging technical success of femoropopliteal percutaneous transluminal angioplasty (PTA) restenosis still remains the major challenge. The main reason for restenosis is neointimal hyperplasia which can be suppressed with antiproliferative drugs. Drug-coated balloons (DCB) or drug-coated stents (DCS) are used for the inhibition of restenosis.

Aim

The present article gives an overview of the currently available DCB systems for femoropopliteal and infrapopliteal use and presents the completed, ongoing and planned trials and registries as well as the open questions for the use of DCBs in peripheral arterial occlusive disease.

Material and methods

A comprehensive search for infrainguinal use of DCBs from 2008 until July 2013 was performed in databases of medical journals, registered randomized controlled trials and published scientific session abstracts.

Results

The major advantages of DCBs are that no residual stent scaffold is left behind, immediate release of high drug concentrations with a single dose and efficacy in areas where DCSs are contraindicated. The clinical evidence of first generation paclitaxel drug-coated balloons (PTX-DCB) has been shown in several controlled randomized trials.

Conclusions

Depending on the type and location of the lesion, DCBs are suitable for treatment of in-stent restenoses, restenoses in the region of the popliteal artery or side branches of the profunda artery for which stent application is contraindicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Axel DI, Kunert W, Goggelmann C et al (1997) Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 96:636–645

    Article  PubMed  CAS  Google Scholar 

  2. Buerke M, Guckenbiehl M, Schwertz H et al (2007) Intramural delivery of sirolimus prevents vascular remodeling following balloon injury. Biochim Biophys Acta 1774:5–15

    Article  PubMed  CAS  Google Scholar 

  3. Camenzind E, Steg PG, Wijns W (2007) Stent thrombosis late after implantation of first-generation drug-eluting stents: a cause for concern. Circulation 115:1440–1455

    Article  PubMed  Google Scholar 

  4. Chaabane C, Fumiyuki O, Virmani R et al (2013) Biological responses in stented arteries. Cardiovasc Res 99:353–363

    Article  PubMed  CAS  Google Scholar 

  5. Conrad MF, Kang J, Cambria RP et al (2009) Infrapopliteal balloon angioplasty for the treatment of chronic occlusive disease. J Vasc Surg 50:799–805.e4

    Article  PubMed  Google Scholar 

  6. Creel CJ, Lovich MA, Edelman ER (2000) Arterial paclitaxel distribution and deposition. Circ Res 86:879–884

    Article  PubMed  CAS  Google Scholar 

  7. Cremers B, Biedermann M, Mahnkopf D et al (2009) Comparison of two different paclitaxel-coated balloon catheters in the porcine coronary restenosis model. Clin Res Cardiol 98:325–330

    Article  PubMed  CAS  Google Scholar 

  8. Cremers B, Speck U, Kaufels N et al (2009) Drug-eluting balloon: very short-term exposure and overlapping. Thromb Haemost 101:201–206

    PubMed  CAS  Google Scholar 

  9. De Vries JP, Karimi A, Fioole B et al (2013) First- and second-generation drug-eluting balloons for femoro-popliteal arterial obstructions: update of technique and results. J Cardiovasc Surg 54:327–332

    Google Scholar 

  10. Deloose K, Lauwers K, Callaert J et al (2013) Drug-eluting technologies in femoral artery lesions. J Cardiovasc Surg 54:217–224

    CAS  Google Scholar 

  11. Fanelli F, Cannavale A, Boatta E et al (2012) Lower limb multilevel treatment with drug-eluting balloons: 6-month results from the DEBELLUM randomized trial. J Endovasc Ther 19:571–580

    Article  PubMed  Google Scholar 

  12. Finn AV, Nakazawa G, Joner M et al (2007) Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vasc Biol 27:1500–1510

    Article  PubMed  CAS  Google Scholar 

  13. Gertz SD, Gimple LW, Banai S et al (1994) Geometric remodeling is not the principal pathogenetic process in restenosis after balloon angioplasty. Evidence from correlative angiographic-histomorphometric studies of atherosclerotic arteries in rabbits. Circulation 90:3001–3008

    Article  PubMed  CAS  Google Scholar 

  14. Granada J, Milewski K, Zhao H et al (2011) Vascular response to zotarolimus-coated balloons in injured superficial femoral arteries of the familial hypercholesterolemic swine. Circ Cardiovasc Interv 4:447–455

    Article  PubMed  CAS  Google Scholar 

  15. Grüntzig A, Kuhlmann U, Vetter W et al (1978) Treatment of renovascular hypertension with percutaneous transluminal dilatation of a renal-artery stenosis. Lancet 1:801–802

    Article  PubMed  Google Scholar 

  16. Hwang CW, Wu D, Edelman ER (2001) Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104:600–605

    Article  PubMed  CAS  Google Scholar 

  17. Joner M, Byrne RA, Lapointe JM et al (2011) Comparative assessment of drug-eluting balloons in an advanced porcine model of coronary restenosis. Thromb Haemost 105:864–872

    Article  PubMed  CAS  Google Scholar 

  18. Kelsch B, Scheller B, Biedermann M et al (2011) Dose response to paclitaxel-coated balloon catheters in the porcine coronary overstretch and stent implantation model. Invest Radiol 46:255–263

    Article  PubMed  CAS  Google Scholar 

  19. Keo H, Do D, Husmann M et al (2008) Oral sirolimus for prevention of recurrent infrainguinal arterial obstructions after surgical and endovascular revascularizations. Vasa 37:285–288

    Article  PubMed  CAS  Google Scholar 

  20. Kohler R, Kaistha BP, Wulff H (2010) Vascular KCa-channels as therapeutic targets in hypertension and restenosis disease. Expert Opin Ther Targets 14:143–155

    Article  PubMed  Google Scholar 

  21. Krokidis M, Spiliopoulos S, Katsanos K et al (2013) Peripheral applications of drug-coated balloons: past, present and future. Cardiovasc Intervent Radiol 36:281–291

    Article  PubMed  Google Scholar 

  22. Liistro F, Porto I, Angioli P et al (2013) Drug-Eluting Balloon in peripherAl inTErvention for Below the Knee Angioplasty Evaluation (DEBATE-BTK): a randomized trial in diabetic patients with critical limb ischemia. Circulation. DOI 10.1161/CIRCULATIONAHA

  23. Matsumura JS, Yamanouchi D, Goldstein JA et al (2013) The United States StuDy for EvalUating EndovasculaR TreAtments of Lesions in the Superficial Femoral Artery and Proximal Popliteal By usIng the Protege EverfLex NitInol STent SYstem II (DURABILITY II). J Vasc Surg 58:73–83

    Article  PubMed  Google Scholar 

  24. McBride W, Lange RA, Hillis LD (1988) Restenosis after successful coronary angioplasty. Pathophysiology and prevention. N Engl J Med 318:1734–1737

    Article  PubMed  CAS  Google Scholar 

  25. Micari A, Cioppa A, Vadala G et al (2013) 2-year results of paclitaxel-eluting balloons for femoropopliteal artery disease: evidence from a multicenter registry. JACC Cardiovasc Interv 6:282–289

    Article  PubMed  Google Scholar 

  26. Micari A, Cioppa A, Vadala G et al (2012) Clinical evaluation of a paclitaxel-eluting balloon for treatment of femoropopliteal arterial disease: 12-month results from a multicenter Italian registry. JACC Cardiovasc Interv 5:331–338

    Article  PubMed  Google Scholar 

  27. Mwipatayi BP, Hockings A, Hofmann M et al (2008) Balloon angioplasty compared with stenting for treatment of femoropopliteal occlusive disease: a meta-analysis. J Vasc Surg 47:461–469

    Article  PubMed  Google Scholar 

  28. Nakazawa G, Vorpahl M, Finn AV et al (2009) One step forward and two steps back with drug-eluting-stents: from preventing restenosis to causing late thrombosis and nouveau atherosclerosis. JACC Cardiovasc Imaging 2:625–628

    Article  PubMed  Google Scholar 

  29. Otsuka F, Nakano M, Ladich E et al (2012) Pathologic etiologies of late and very late stent thrombosis following first-generation drug-eluting stent placement. Thrombosis 2012:608593

    Article  PubMed  Google Scholar 

  30. Post MJ, Borst C, Kuntz RE (1994) The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. A study in the normal rabbit and the hypercholesterolemic Yucatan micropig. Circulation 89:2816–2821

    Article  PubMed  CAS  Google Scholar 

  31. Scheinert D (2010) LEVANT-trial 6 month results – a comparison of the Moxy drug Coated Balloon Catheter vs Standard PTA for Femoropopliteal Disease. September. Transcatheter Cardiovascular Therapeutics Congress September, Washington DC. http://www.tctmd.com/show.aspx?id=102034

  32. Scheinert D, Scheinert S, Sax J et al (2005) Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol 45:312–315

    Article  PubMed  Google Scholar 

  33. Scheller B, Speck U, Abramjuk C et al (2004) Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 110:810–814

    Article  PubMed  CAS  Google Scholar 

  34. Schmidt A, Piorkowski M, Werner M et al (2011) First experience with drug-eluting balloons in infrapopliteal arteries: restenosis rate and clinical outcome. J Am Coll Cardiol 58:1105–1109

    Article  PubMed  CAS  Google Scholar 

  35. Schnorr B, Albrecht T (2013) Drug-coated balloons and their place in treating peripheral arterial disease. Expert Rev Med Devices 10:105–114

    Article  PubMed  CAS  Google Scholar 

  36. Schnorr B, Kelsch B, Cremers B et al (2010) Paclitaxel-coated balloons – survey of preclinical data. Minerva Cardioangiol 58:567–582

    PubMed  CAS  Google Scholar 

  37. Schoenefeld E, Donas KP, Schonefeld T et al (2012) Mid-term outcome after endovascular therapy in the superficial femoral and popliteal artery using long stents. Vasa 41:49–56

    Article  PubMed  Google Scholar 

  38. Sheiban I, Anselmino M, Moretti C et al (2008) Effect of a novel drug-eluted balloon coated with genistein before stent implantation in porcine coronary arteries. Clin Res Cardiol 97:891–898

    Article  PubMed  CAS  Google Scholar 

  39. Söder HK, Manninen HI, Rasanen HT et al (2002) Failure of prolonged dilation to improve long-term patency of femoropopliteal artery angioplasty: results of a prospective trial. J Vasc Interv Radiol 13:361–369

    Article  PubMed  Google Scholar 

  40. Speck U, Cremers B, Kelsch B et al (2012) Do pharmacokinetics explain persistent restenosis inhibition by a single dose of paclitaxel? Circ Cardiovasc Interv 5:392–400

    Article  PubMed  CAS  Google Scholar 

  41. Speck U, Scheller B, Abramjuk C et al (2006) Neointima inhibition: comparison of effectiveness of non-stent-based local drug delivery and a drug-eluting stent in porcine coronary arteries. Radiology 240:411–418

    Article  PubMed  Google Scholar 

  42. Strauss BH, Chisholm RJ, Keeley FW et al (1994) Extracellular matrix remodeling after balloon angioplasty injury in a rabbit model of restenosis. Circ Res 75:650–658

    Article  PubMed  CAS  Google Scholar 

  43. Tepe G, Zeller T, Albrecht T et al (2008) Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med 358:689–699

    Article  PubMed  CAS  Google Scholar 

  44. Tepe GS, Scheller B, Speck U (2007) Paclitaxel-coated angioplasty catheters for local drug delivery. Interv Cardiol 61–63

  45. Tharp DL, Wamhoff BR, Wulff H et al (2008) Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler Thromb Vasc Biol 28:1084–1089

    Article  PubMed  CAS  Google Scholar 

  46. Varcoe RL (2013) Drug eluting stents in the treatment of below the knee arterial occlusive disease. J Cardiovasc Surg (Torino) 54:313–325

    Google Scholar 

  47. Waksman R, Pakala R (2009) Drug-eluting balloon: the comeback kid? Circ Cardiovasc Interv 2:352–358

    Article  PubMed  CAS  Google Scholar 

  48. Werk M, Albrecht T, Meyer DR et al (2012) Paclitaxel-coated balloons reduce restenosis after femoro-popliteal angioplasty: evidence from the randomized PACIFIER trial. Circ Cardiovasc Interv 5:831–840

    Article  PubMed  CAS  Google Scholar 

  49. Werk M, Langner S, Reinkensmeier B et al (2008) Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation 118:1358–1365

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Herten, S. Stahlhoff, T. Bisdas, K. Donas, A. Schwindt, G. Torsello und E. Schönefeld geben an, dass kein Interessenkonflikt besteht. Das vorliegende Manuskript enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Herten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herten, M., Stahlhoff, S., Bisdas, T. et al. Medikamentenbeschichtete Ballonkatheter in der Behandlung der peripheren arteriellen Verschlusskrankheit. Gefässchirurgie 18, 520–532 (2013). https://doi.org/10.1007/s00772-013-1226-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-013-1226-5

Schlüsselwörter

Keywords

Navigation