Skip to main content
Log in

Sport und Krebsprävention

Impact of sports on cancer prevention

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

In der Presse finden sich Aussagen wie „Sport ist wichtiger als ein Krebsmedikament“ und ein wachsendes Angebot an Sportangeboten wird von Tumorpatienten regelmäßig wahrgenommen. Welchen therapeutischen Wert hat Sport für Patienten, was macht ein solches Sportangebot aus, wie häufig und intensiv sollte Sport getrieben werden? Fragen, die sich Ärzte, Therapeuten und Patienten gleichermaßen stellen.

Ziel

Im Sinne der drei klassischen Präventionsebenen (primär, sekundär und tertiär) soll das Potenzial von Sport in der Prävention von Krebs betrachtet werden: Kann Sport das Risiko, an Krebs zu erkranken, verändern? Kann Sport zu der Früherkennung von Krebs beitragen? Hilft Sport Tumorpatienten bei der Bewältigung ihrer Erkrankung?

Material und Methoden

Diese Arbeit basiert auf einer selektiven Literaturrecherche in der Datenbank PubMed zum Thema „Sport, Bewegung und körperlicher Aktivität“ sowie „Krebs“. Zudem wurden Daten des eigenen Patientenkollektivs ausgewertet.

Ergebnisse und Diskussion

Epidemiologische Studien zeigen eine wirksame Reduzierung von molekularen Faktoren wie hohe Insulin- und IGF-Spiegel sowie eine hohe Insulinresistenz durch Sport, die gleichsam hohe Risikofaktoren für zahlreiche Tumorerkrankungen sind. Andere Faktoren wie Interleukin-6 (IL-6) gelten ebenfalls als Mediatoren der Erkrankung, sind aber auch Teil von physiologischen Anpassungsreaktionen auf Training im Sport, sodass ihre Rolle im Sinne einer präventiven Kausalkette kritisch hinterfragt werden darf. Die Ausübung von Sport oder auch negative Begleiterscheinungen wie die zunehmende Einnahme leistungssteigernder Substanzen kann das Krebsrisiko auch erhöhen. Im Sinne sekundärer Prävention können Sport und sportwissenschaftliche Methoden einen Beitrag leisten, um in der Frühphase der Krebserkrankung drohende Begleiterscheinungen der Erkrankung wie Kachexie aufzudecken. Für die Gestaltung von Trainingsprogrammen für Tumorpatienten werden konkrete Empfehlungen gegeben.

Abstract

Background

In the press there are statements, such as “sport more important than a cancer medicine” and tumor patients regularly participate in a growing number of sports. What is the therapeutic value of sport for patients, what is the impact of such a sport offer and how often and intensively should sport be practiced? Questions that are asked by doctors, therapists and patients.

Objectives

The potential of sport in the prevention of cancer should be considered in the sense of the three classical prevention levels (primary, secondary and tertiary): can practicing sport change the risk of developing cancer? Can sport contribute to the early detection of cancer? Does sport help tumor patients with their disease?

Material and methods

This article is based on a selective literature search of the PubMed database for the topics “sports, exercise and physical activity” and “cancer”. In addition, data from the own patient population were evaluated.

Results and conclusion

Epidemiological studies show an effective reduction of molecular factors, such as high insulin and insulin-like growth factor (IGF) levels as well as high insulin resistance through sport, which are high risk factors for numerous tumor diseases. Other factors, such as interleukin 6 (IL-6) are also mediators of the disease but are part of physiological adaptation responses to training in sport so that their role in the sense of a preventive causal chain can be critically questioned. The practice of sport and also negative side effects, such as increased intake of performance enhancing substances may also increase the risk of cancer. In the sense of secondary prevention, sports and sports scientific methods can contribute to uncovering threatening side effects of the disease, such as cachexia in the early stages of cancer. Concrete recommendations are given for the design of training programs for tumor patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ainsworth BE, Haskell WL, Herrmann SD et al (2011) 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43:1575–1581. doi:10.1249/MSS.0b013e31821ece12

    Article  PubMed  Google Scholar 

  2. Ainsworth BE LA, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC. The Compendium of Physical Activities Tracking Guide. Healthy Lifestyles Research Center, College of Nursing & Health Innovation, Arizona State University. https://sites.google.com/site/compendiumofphysicalactivities/. Zugegriffen: 21.02.2017

  3. Barnard RJ, Aronson WJ, Tymchuk CN, Ngo TH (2002) Prostate cancer: another aspect of the insulin-resistance syndrome? Obes Rev 3:303–308

    Article  CAS  PubMed  Google Scholar 

  4. Van Blarigan EL, Meyerhardt JA (1834) Role of physical activity and diet after colorectal cancer diagnosis. J Clin Oncol 33:1825. doi:10.1200/JCO.2014.59.7799

    Article  Google Scholar 

  5. Bruning PF, Bonfrèr JM, van Noord PA et al (1992) Insulin resistance and breast-cancer risk. Int J Cancer 52:511–516

    Article  CAS  PubMed  Google Scholar 

  6. Climstein M, Furness J, Hing W, Walsh J (2016) Lifetime prevalence of non-melanoma and melanoma skin cancer in Australian recreational and competitive surfers. Photodermatol Photoimmunol Photomed 32:207–213. doi:10.1111/phpp.12247

    Article  PubMed  Google Scholar 

  7. Coughlin SS, Smith SA (2015) The insulin-like growth factor axis, adipokines, physical activity, and obesity in relation to breast cancer incidence and recurrence. Cancer Clin Oncol 4:24–31. doi:10.5539/cco.v4n2p24

    PubMed  PubMed Central  Google Scholar 

  8. Del Giudice ME, Fantus IG, Ezzat S et al (1998) Insulin and related factors in premenopausal breast cancer risk. Breast Cancer Res Treat 47:111–120

    Article  PubMed  Google Scholar 

  9. Dossus L, Lukanova A, Rinaldi S et al (2013) Hormonal, metabolic, and inflammatory profiles and endometrial cancer risk within the EPIC cohort – a factor analysis. Am J Epidemiol 177:787–799. doi:10.1093/aje/kws309

    Article  PubMed  Google Scholar 

  10. Fortunati N, Catalano MG, Boccuzzi G, Frairia R (2010) Sex hormone-binding globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol 316:86–92. doi:10.1016/j.mce.2009.09.012

    Article  CAS  PubMed  Google Scholar 

  11. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. doi:10.1016/j.cell.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Henriksson J (1995) Influence of exercise on insulin sensitivity. J Cardiovasc Risk 2:303–309

    Article  CAS  PubMed  Google Scholar 

  13. Hersey WC, Graves JE, Pollock ML et al (1994) Endurance exercise training improves body composition and plasma insulin responses in 70- to 79-year-old men and women. Metab Clin Exp 43:847–854

    Article  CAS  PubMed  Google Scholar 

  14. Holman CD, Armstrong BK, Heenan PJ (1986) Relationship of cutaneous malignant melanoma to individual sunlight-exposure habits. J Natl Cancer Inst 76:403–414

    CAS  PubMed  Google Scholar 

  15. Jaspers L, Dhana K, Muka T et al (2016) Sex steroids, sex hormone-binding globulin and cardiovascular health in men and postmenopausal women: the Rotterdam study. J Clin Endocrinol Metab 101:2844–2852. doi:10.1210/jc.2016-1435

    Article  CAS  PubMed  Google Scholar 

  16. Johnson FL (1975) The association of oral androgenic-anabolic steroids and life-threatening disease. Med Sci Sports 7:284–286

    CAS  PubMed  Google Scholar 

  17. Kaaks R, Lukanova A, Rinaldi S et al (2003) Interrelationships between plasma testosterone, SHBG, IGF-I, insulin and leptin in prostate cancer cases and controls. Eur J Cancer Prev 12:309–315. doi:10.1097/01.cej.0000081841.21881.1c

    Article  CAS  PubMed  Google Scholar 

  18. Kirwan JP, Kohrt WM, Wojta DM et al (1993) Endurance exercise training reduces glucose-stimulated insulin levels in 60- to 70-year-old men and women. J Gerontol 48:M84–M90

    Article  CAS  PubMed  Google Scholar 

  19. Krakowski-Roosen H, Eckey S (2014) Funktionelles Training. Motorbuch Verlag, Stuttgart

    Google Scholar 

  20. Krakowski-Roosen H, Kinscherf R, Renk H et al (2008) Detecting functional changes in locomotor muscles of cachectic cancer patients: isometric-Isokinetic-peak-torque-ratio gives an additional impact beside weakness because of muscle shrinkage. 13th annual Congress of the European College of Sport Science, Estoril.

    Google Scholar 

  21. Krakowski-Roosen H, Martignoni ME (2012) Einfluss von Sport auf die Tumorkachexie? – Ist Krafttraining ein lohnender Therapieansatz oder Irrweg? 30. Krebskongress, Berlin, 22.–25. Februar 2012.

    Google Scholar 

  22. Martignoni ME, Kunze P, Hildebrandt W et al (2005) Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related cachexia. Clin Cancer Res 11:5802–5808. doi:10.1158/1078-0432.CCR-05-0185

    Article  CAS  PubMed  Google Scholar 

  23. Meneses-Echávez JF, Jiménez EG, Río-Valle JS et al (2016) The insulin-like growth factor system is modulated by exercise in breast cancer survivors: a systematic review and meta-analysis. BMC Cancer 16:682. doi:10.1186/s12885-016-2733-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst 96:1856–1865. doi:10.1093/jnci/djh336

    Article  CAS  PubMed  Google Scholar 

  25. Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL (2013) Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 280:4131–4148. doi:10.1111/febs.12338

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nagamani M, Hannigan EV, Dinh TV, Stuart CA (1988) Hyperinsulinemia and stromal luteinization of the ovaries in postmenopausal women with endometrial cancer. J Clin Endocrinol Metab 67:144–148. doi:10.1210/jcem-67-1-144

    Article  CAS  PubMed  Google Scholar 

  27. Neilson HK, Friedenreich CM, Brockton NT, Millikan RC (2009) Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology 18:11–27. doi:10.1158/1055-9965.epi-08-0756

    CAS  Google Scholar 

  28. Paxton RJ, Jung SY, Vitolins MZ et al (2014) Associations between time spent sitting and cancer-related biomarkers in postmenopausal women: an exploration of effect modifiers. Cancer Causes Control 25:1427–1437. doi:10.1007/s10552-014-0434-y

    Article  PubMed  PubMed Central  Google Scholar 

  29. Petersen AMW, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162. doi:10.1152/japplphysiol.00164.2004

    Article  CAS  PubMed  Google Scholar 

  30. Richter EA, Turcotte L, Hespel P, Kiens B (1992) Metabolic responses to exercise. Effects of endurance training and implications for diabetes. Diabetes Care 15:1767–1776

    Article  CAS  PubMed  Google Scholar 

  31. Rutanen EM, Stenman S, Blum W et al (1993) Relationship between carbohydrate metabolism and serum insulin-like growth factor system in postmenopausal women: comparison of endometrial cancer patients with healthy controls. J Clin Endocrinol Metab 77:199–204. doi:10.1210/jcem.77.1.7686914

    CAS  PubMed  Google Scholar 

  32. Sax AT, Jenkins DG, Devin JL et al (2014) The insulin-like growth factor axis: a biological mechanism linking physical activity to colorectal cancer survival. Cancer Epidemiol 38(4):455–459. doi:10.1016/j.canep.2014.05.011

    Article  PubMed  Google Scholar 

  33. Serrano AL, Baeza-Raja B, Perdiguero E et al (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7:33–44. doi:10.1016/j.cmet.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  34. Simon P, Striegel H, Aust F et al (2006) Doping in fitness sports: estimated number of unreported cases and individual probability of doping. Addiction 101:1640–1644. doi:10.1111/j.1360-0443.2006.01568.x

    Article  PubMed  Google Scholar 

  35. Sjöholm A, Nyström T (2006) Inflammation and the etiology of type 2 diabetes. Diabetes Metab Res Rev 22:4–10. doi:10.1002/dmrr.568

    Article  PubMed  Google Scholar 

  36. Soukup JT, Kovaleski JE (1993) A review of the effects of resistance training for individuals with diabetes mellitus. Diabetes Educ 19:307–312

    Article  CAS  PubMed  Google Scholar 

  37. Tentori L, Graziani G (2007) Doping with growth hormone/IGF-1, anabolic steroids or erythropoietin: is there a cancer risk? Pharmacol Res 55:359–369. doi:10.1016/j.phrs.2007.01.020

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Krakowski-Roosen.

Ethics declarations

Interessenkonflikt

H. Krakowski-Roosen gibt an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krakowski-Roosen, H. Sport und Krebsprävention. Onkologe 23, 438–445 (2017). https://doi.org/10.1007/s00761-017-0202-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-017-0202-1

Schlüsselwörter

Keywords

Navigation