Skip to main content
Log in

Antidiabetic activity of Tartary buckwheat protein-derived peptide AFYRW and its effects on protein glycosylation of pancreas in mice

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Diabetes Mellitus (DM) is one of the most important public health problems, and new antidiabetic drugs with fewer side effects are urgently needed. Here, we measured the antidiabetic effects of an antioxidant peptide (Ala-Phe-Tyr-Arg-Trp, AFYRW) from Tartary Buckwheat Albumin (TBA) in a high-fat diet/streptozotocin (HFD/STZ)-induced diabetic mouse model. The data showed that AFYRW suppressed hepatocyte steatosis and triglycerides while ameliorating insulin resistance in mice. Successively, the influence of AFYRW on aberrant protein glycosylation in diabetic mice was further investigated by lectin microarrays. The results suggested AFYRW could restore the expression of GalNAc, GalNAcα1-3Gal and GalNAcα1-3Galβ1-3/4Glc recognized by PTL-I, Siaα2-3Galβ1-4Glc(NAc)/Glc, Siaα2-3Gal, Siaα2-3 and Siaα2-3GalNAc recognized by MAL-II, terminating in GalNAcα/β1-3/6Gal recognized by WFA and αGalNAc, αGal, anti-A and B recognized by GSI-I to normal levels in the pancreas of HFD-STZ-induced diabetic mice. This work may provide new targets for the future discovery of potential biomarkers to evaluate the efficacy of food-derived antidiabetic drugs based on precise alterations of glycopatterns in DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used in this work are available upon request.

Abbreviations

AFYRW:

Ala-Phe-Tyr-Arg-Trp

DM:

Diabetes mellitus

FBG:

Fasting blood glucose

FINS:

Fasting insulin

HFD:

High-fat diet

HOMA-IR:

Insulin resistance index

LDL:

Low-density lipoprotein

ND:

Normal diet

NFI:

Normalized fluorescence intensity

OGTT:

Oral glucose tolerance test

STZ:

Streptozotocin

TBA:

Tartary buckwheat albumin

T2DM:

Type 2 diabetes

TG:

Triglyceride

TC:

Total cholesterol

References

  • Adua E, Afrifa-Yamoah E, Peprah-Yamoah E, Anto EO, Acheampong E, Awuah-Mensah KA et al (2022) Multi-block data integration analysis for identifying and validating targeted N-glycans as biomarkers for type II diabetes mellitus. Sci Rep 12(1):10974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti S, Guha S, Majumder K (2018) Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients 10(11):1738

    Article  PubMed  PubMed Central  Google Scholar 

  • Chewchinda S, Leakaya N, Sato H, Sato VH (2019) Antidiabetic effects of Maclura cochinchinensis (Lour) corner heartwood extract. J Tradit Complement Med 11(1):68–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuan Y, He X, Zhao Y, Yang J, Bai Y, Sun Y et al (2017) Anticonvulsant activity of halogen-substituted cinnamic acid derivatives and their effects on glycosylation of PTZ-induced chronic epilepsy in mice. Molecules 23(1):76

    Article  PubMed  PubMed Central  Google Scholar 

  • Daliri EB, Oh DH, Lee BH (2017) Bioactive peptides. Foods 6(5):32

    Article  PubMed  PubMed Central  Google Scholar 

  • DeFronzo RA (2004) Pathogenesis of type 2 diabetes mellitus. Med Clin Northam 88:787–835

    Article  CAS  Google Scholar 

  • Eichler J (2019) Protein glycosylation. Curr Biol 29(7):R229–R231

    Article  CAS  PubMed  Google Scholar 

  • Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ (2015) Lifestyleweight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomizedclinical trials. J Acad Nutr Diet 115(9):1447–1463

    Article  PubMed  Google Scholar 

  • George JT, Warriner DA, Anthony J, Rozario KS, Xavier S, Jude EB et al (2008) Training tomorrow’s doctors in diabetes: self-reported confidence levels, practice and perceived training needs of post-graduate trainee doctors in the UK. A multi-centre survey. BMC Med Educ 8:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh D, Parida P (2016) Drug discovery and development of type 2 diabetes mellitus: modern-integrative medicinal approach. Curr Drug Discov Technol Curr 13(2):60–67

    Article  CAS  Google Scholar 

  • Heydemann A (2016) An overview of murine high fat diet as a model for type 2 diabetes mellitus. J Diabetes Res 2016:2902351

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanuri G, Bergheim I (2013) In vitro and in vivo models of nonalcoholic fatty liver disease (NAFLD). Int J Mol Sci 14(6):11963–11980

    Article  PubMed  PubMed Central  Google Scholar 

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: Production and functionality. Int Dairy J 16:94–960

    Article  Google Scholar 

  • Luo X, Fei Y, Xu Q, Lei T, Mo X, Wang Z et al (2020) Isolation and identification of antioxidant peptides from tartary buckwheat albumin (Fagopyrum tataricum Gaertn.) and their antioxidant activities. J Food Sci 85(3):611–617

    Article  CAS  PubMed  Google Scholar 

  • Luthar Z, Golob A, Germ M, Vombergar B, Kreft I (2021) Tartary buckwheat in human nutrition. Plants (basel) 10(4):700

    Article  CAS  PubMed  Google Scholar 

  • McMillan DE (1972) Elevation of glycoprotein fucose in diabetes mellitus. Diabetes 21:863–871

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Terauchi Y (2013) Lessons from mouse models of high-fat diet-induced NAFLD. Int J Mol Sci 14(11):21240–21257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Rios S, Blaschke CRK, Wang M, Peterson KD, DelaCourt A, Grauzam SE et al (2023) Analysis of N-linked glycan alterations in tissue and serum reveals promising biomarkers for intrahepatic cholangiocarcinoma. Cancer Res Commun 3(3):383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD (2005) Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123:1307–1321

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Ferrer L, Legler K, Milde-Langosch K (2017) Role of protein glycosylation in cancer metastasis. Semin Cancer Biol 44:141–152

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Zhong Y, Zhu M, Dang L, Yu H, Chen Z et al (2013) Age- and sex-associated differences in the glycopatterns of human salivary glycoproteins and their roles against influenza A virus. J Proteome Res 12(6):2742–2754

    Article  CAS  PubMed  Google Scholar 

  • Reaven GM (2005) The insulin resistance syndrome: definition and dietary approaches to treatment. Annu Rev Nutr 25:391–406

    Article  CAS  PubMed  Google Scholar 

  • Rudman N, Gornik O, Lauc G (2019) Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett 593(13):1598–1615

    Article  CAS  PubMed  Google Scholar 

  • Sampath Kumar A, Maiya AG, Shastry BA, Vaishali K, Ravishankar N, Hazari A et al (2019) Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Phys Rehabil Med 62(2):98–103

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ et al (2019) DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 35(17):3055–3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winzell MS, Ahrén B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(Suppl 3):S215-219

    Article  PubMed  Google Scholar 

  • Xu L, Li Y, Dai Y, Peng J (2018) Natural products for the treatment of type 2 diabetes mellitus: pharmacology and mechanisms. Pharmacol Res 130:451–465

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Zhao J, Yang R, Zhao W (2019) Bioactive peptides with antidiabetic properties: a review. Int J Food Sci Technol 54:1909–1919

    Article  CAS  Google Scholar 

  • Yan X, Zhang Y, Peng Y, Li X (2022) The water extract of Radix scutellariae, its total flavonoids and baicalin inhibited CYP7A1 expression, improved bile acid, and glycolipid metabolism in T2DM mice. J Ethnopharmacol 293:115238

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yin M, Hou Y, Li H, Guo Y, Yu H et al (2022) Role of ammonia for brain abnormal protein glycosylation during the development of hepatitis B virus-related liver diseases. Cell Biosci 12(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JH, Min SH, Ahn CH, Cho YM, Hahn S (2018) Comparison of non-insulin antidiabetic agents as an add-on drug to insulin therapy in type 2 diabetes: a network meta-analysis. Sci Rep 8(1):4095

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu H, Shu J, Li Z (2020) Lectin microarrays for glycoproteomics: an overview of their use and potential. Expert Rev Proteomics 17(1):27–39

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Cao D, Yan M, Liu M (2020) The feasibility of Chinese massage as an auxiliary way of replacing or reducing drugs in the clinical treatment of adult type 2 diabetes: a systematic review and meta-analysis. Medicine (baltimore) 99(34):e21894

    Article  CAS  PubMed  Google Scholar 

  • Zhu F (2016) Chemical composition and health effects of Tartary buckwheat. Food Chem 203:231–245

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Wu D, Ren G, Hu Y, Peng L, Zhao J et al (2023) Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Crit Rev Food Sci Nutr 63(5):657–673

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Guizhou Provincial Science and Technology Projects (Grant No. 19NSP038; ZK [2021] 104) and the Research Foundation for Advanced Talents of Guizhou Medical University (Grant No. University Contract of Doctors J [2022] 29).

Author information

Authors and Affiliations

Authors

Contributions

JJY, JZ and HML conceived and designed experiments. JJY, JZ, YD, LLZ, HJY, CZ and ZL designed and performed the experiments. JJY, JZ and HML designed and performed the data acquisition and analysis. ZL helped with critical advice and discussion. JJY, ZL and HML prepared the manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Zheng Li or Hongmei Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All mice experiments were performed in compliance with the People's Republic of China Legislation Regarding the Use and Care of Laboratory.

Informed consent

Not applicable.

Additional information

Handling editor: S. Albrecht.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zuo, J., Deng, Y. et al. Antidiabetic activity of Tartary buckwheat protein-derived peptide AFYRW and its effects on protein glycosylation of pancreas in mice. Amino Acids 55, 1063–1071 (2023). https://doi.org/10.1007/s00726-023-03294-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-023-03294-1

Keywords

Navigation