Skip to main content
Log in

In silico identification of novel ACE and DPP-IV inhibitory peptides derived from buffalo milk proteins and evaluation of their inhibitory mechanisms

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The capacity of buffalo milk proteins to release bioactive peptides was evaluated and novel bioactive peptides were identified. The sequential similarity between buffalo milk proteins and their cow counterparts was analysed. Buffalo milk proteins were simulated to yield theoretical peptides via in silico proteolysis. The potential of selected proteins to release specific bioactive peptides was evaluated by the A value obtained from the BIOPEP–UWM database (Minkiewicz et al. in Int J Mol Sci 20(23):5978, 2019). Buffalo milk protein is a suitable precursor to produce bioactive peptides, particularly dipeptidyl peptidase IV (DPP-IV) and angiotensin I-converting enzyme (ACE) inhibitory peptides. Two novel ACE inhibitory peptides (KPW and RGP) and four potential DPP-IV inhibitory peptides (RGP, KPW, FPK and KFTW) derived from in silico proteolysis of buffalo milk proteins were screened using different integrated bioinformatic approaches (PeptideRanker, Innovagen, peptide-cutter and molecular docking). The Lineweaver–Burk plots showed that KPW (IC50 = 136.28 ± 10.77 μM) and RGP (104.72 ± 8.37 μM) acted as a competitive inhibitor against ACE. Similarly, KFTW (IC50 = 873.92 ± 32.89 μM) was also a competitive inhibitor of DPP-IV, while KPW and FPK (82.52 ± 10.37 and 126.57 ± 8.45 μM, respectively) were mixed-type inhibitors. It should be emphasized that this study does not involve any clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Hamid M, Otte J, De Gobba C, Osman A, Hamad E (2017) Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int Dairy J 66:91–98

    Article  CAS  Google Scholar 

  • Ahmad S, Gaucher I, Rousseau F, Beaucher E, Piot M, Grongnet JF, Gaucheron F (2008) Effects of acidification on physico-chemical characteristics of buffalo milk: a comparison with cow’s milk. Food Chem 106(1):11–17

    Article  CAS  Google Scholar 

  • Basilicata MG, Pepe G, Sommella E, Ostacolo C, Manfra M, Sosto G, Pagano G, Novellino E, Campiglia P (2018) Peptidome profiles and bioactivity elucidation of buffalo-milk dairy products after gastrointestinal digestion. Food Res Int 105:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Bonfatti V, Giantin M, Rostellato R, Dacasto M, Carnier P (2013) Separation and quantification of water buffalo milk protein fractions and genetic variants by RP-HPLC. Food Chem 136(2):364–367

    Article  CAS  PubMed  Google Scholar 

  • Brijesha N, Aparna H (2017) Comprehensive characterization of bioactive peptides from Buffalo (Bubalus bubalis) colostrum and milk fat globule membrane proteins. Food Res Int 97:95–103

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Qi X, Guan K, Gu Y, Wang R, Li Q, Ma Y (2021) Peptides released from bovine α-lactalbumin by simulated digestion alleviated free fatty acids-induced lipid accumulation in HepG2 cells. J Funct Foods 85:104618

    Article  CAS  Google Scholar 

  • Dalgleish DG, Corredig M (2012) The structure of the casein micelle of milk and its changes during processing. Annu Rev Food Sci Technol 3:449–467

    Article  CAS  PubMed  Google Scholar 

  • Dave LA, Montoya CA, Rutherfurd SM, Moughan PJ (2014) Gastrointestinal endogenous proteins as a source of bioactive peptides-an in silico study. PLoS One 9(6):e98922

    Article  PubMed  PubMed Central  Google Scholar 

  • Dziuba M, Dziuba B (2010) In silico analysis of bioactive peptides. In: Mine Y, Li-Chan E, Jiang B (eds) Bioactive proteins and peptides as functional foods and nutraceuticals. Wiley-Blackwell and IFT Press, Ames, pp 325–340

    Chapter  Google Scholar 

  • El-Salam MHA, El-Shibiny S (2013) Bioactive peptides of buffalo, camel, goat, sheep, mare, and yak milks and milk products. Food Rev Int 29(1):1–23

    Article  Google Scholar 

  • Fan F, Shi P, Chen H, Tu M, Wang Z, Lu W, Du M (2019) Identification and availability of peptides from lactoferrin in the gastrointestinal tract of mice. Food Funct 10(2):879

    Article  CAS  PubMed  Google Scholar 

  • Fekete AA, Givens DI, Lovegrove JA (2015) Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials. Nutrients 7(1):659–681

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghasemi JB, Abdolmaleki A, Shiri F (2017) Molecular docking challenges and limitations. In: Association IRM (ed) Pharmaceutical sciences: breakthroughs in research and practice. IGI Global, Hershey, pp 770–794

    Chapter  Google Scholar 

  • Gong H, Gao J, Wang Y, Luo Q, Guo K, Ren F, Mao X (2020) Identification of novel peptides from goat milk casein that ameliorate high-glucose-induced insulin resistance in HepG2 cells. J Dairy Sci 103(6):4907–4918

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Li X, Liu H, Li Q, Xiao R, Dudu OE, Yang L, Ma Y (2020) The impact of multiple-species starters on the peptide profiles of yoghurts. Int Dairy J 106:104684

    Article  CAS  Google Scholar 

  • Han B-Z, Meng Y, Li M, Yang Y-X, Ren F-Z, Zeng Q-K, Nout MR (2007) A survey on the microbiological and chemical composition of buffalo milk in China. Food Control 18(6):742–746

    Article  CAS  Google Scholar 

  • Han R, Maycock J, Murray BS, Boesch C (2018) Identification of angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory peptides derived from oilseed proteins using two integrated bioinformatic approaches. Food Res Int 115:283–291

    Article  PubMed  Google Scholar 

  • Hatanaka T, Inoue Y, Arima J, Kumagai Y, Usuki H, Kawakami K, Kimura M, Mukaihara T (2012) Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chem 134(2):797–802

    Article  CAS  PubMed  Google Scholar 

  • Ichimura T, Hu J, Aita D, Maruyama S (2003) Angiotensin I-converting enzyme inhibitory activity and insulin secretion stimulative activity of fermented fish sauce. J Biosci Bioeng 96:496–499

    Article  CAS  PubMed  Google Scholar 

  • Joost S, Jesper B, Francois S, Robby N, Frederic R, Luis S (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(Web Server issue):W382-388

    Google Scholar 

  • Kapila R, Kavadi PK, Kapila S (2013) Comparative evaluation of allergic sensitization to milk proteins of cow, buffalo and goat. Small Rumin Res 112(1–3):191–198

    Article  Google Scholar 

  • Korhonen H, Pihlanto A (2003) Food-derived bioactive peptides-opportunities for designing future foods. Curr Pharm Des 9:1297–1308

    Article  CAS  PubMed  Google Scholar 

  • Lan VTT, Ito K, Ohno M, Motoyama T, Kawarasaki Y (2015) Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor. Food Chem 175:66–73

    Article  CAS  PubMed  Google Scholar 

  • Lin K, Zhang LW, Han X, Cheng DY (2017) Novel angiotensin I-converting enzyme inhibitory peptides from protease hydrolysates of Qula casein: quantitative structure-activity relationship modeling and molecular docking study. J Funct Foods 32:266–277

    Article  CAS  Google Scholar 

  • Lin K, Zhang LW, Han X, Xin L, Meng ZX, Gong PM, Cheng DY (2018) Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chem 254:340–347

    Article  CAS  PubMed  Google Scholar 

  • Maruyama S, Ohmori T, Nakagami T (1996) Prolylendopeptidase inhibitory activity of a glial fibrillary acidic protein fragment and other proline-rich peptides. Biosci Biotechnol Biochem 60(2):358–359

    Article  CAS  PubMed  Google Scholar 

  • Minervini F, Algaron F, Rizzello CG, Fox PF, Monnet V, Gobbetti M (2003) Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl Environ Microbiol 69(9):5297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minkiewicz P, Iwaniak A, Darewicz M (2019) BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci 20(23):5978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullally MM, Meisel H, FitzGerald RJ (1997) Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine β-lactoglobulin. FEBS Lett 402(2–3):99–101

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995) Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J Dairy Sci 78(4):777–783

    Article  CAS  PubMed  Google Scholar 

  • Nongonierma AB, Fitzgerald RJ (2013a) Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides 39(Complete):157–163

    Article  CAS  PubMed  Google Scholar 

  • Nongonierma AB, Fitzgerald RJ (2013b) Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing peptides. J Funct Foods 5(4):1909–1917

    Article  CAS  Google Scholar 

  • Nongonierma AB, FitzGerald RJ (2014) Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chem 145:845–852

    Article  CAS  PubMed  Google Scholar 

  • Nongonierma AB, Mooney C, Shields DC, Fitzgerald RJ (2013) Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides. Food Chem 141(1):644–653

    Article  CAS  PubMed  Google Scholar 

  • Norris R, Poyarkov A, O’Keeffe MB, FitzGerald RJ (2014) Characterisation of the hydrolytic specificity of Aspergillus niger derived prolyl endoproteinase on bovine β-casein and determination of ACE inhibitory activity. Food Chem 156:29–36

    Article  CAS  PubMed  Google Scholar 

  • Pepe G, Basilicata MG, Carrizzo A, Adesso S, Ostacolo C, Sala M, Sommella E, Ruocco M, Cascioferro S, Ambrosio M, Pisanti S, Di Sarno V, Bertamino A, Marzocco S, Vecchione C, Campiglia P (2019) β-Lactoglobulin heptapeptide reduces oxidative stress in intestinal epithelial cells and angiotensin II-induced vasoconstriction on mouse mesenteric arteries by induction of nuclear factor erythroid 2-related factor 2 (Nrf2) translocation. Oxid Med Cell Longev 2019:1–13

    Article  Google Scholar 

  • Rafiq S, Huma N, Pasha I, Sameen A, Mukhtar O, Khan MI (2016) Chemical composition, nitrogen fractions and amino acids profile of milk from different animal species. Asian-Australas J Anim Sci 29(7):1022–1028

    Article  CAS  PubMed  Google Scholar 

  • Reddi S, Shanmugam VP, Kapila S, Kapila R (2016) Identification of buffalo casein-derived bioactive peptides with osteoblast proliferation activity. Eur Food Res Technol 242(12):2139–2146

    Article  CAS  Google Scholar 

  • Reddi S, Shanmugam VP, Tanedjeu KS, Kapila S, Kapila R (2018) Effect of buffalo casein-derived novel bioactive peptides on osteoblast differentiation. Eur J Nutr 57(2):593–605

    Article  CAS  PubMed  Google Scholar 

  • Richter B, Bandeira-Echtler E, Bergerhoff K, Lerch C (2008) Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev 32(2):193–203

    Google Scholar 

  • Shanmugam VP, Kapila S, Sonfack TK, Kapila R (2015) Antioxidative peptide derived from enzymatic digestion of buffalo casein. Int Dairy J 42:1–5

    Article  CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tu M, Cheng S, Lu W, Du M (2018a) Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: sequence, structure, and functions. Trends Analyt Chem 105:7–17

    Article  CAS  Google Scholar 

  • Tu M, Wang C, Chen C, Zhang R, Liu H, Lu W, Jiang L, Du M (2018b) Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chem 256(Aug. 1):98–104

    Article  CAS  PubMed  Google Scholar 

  • Udenigwe CC (2014) Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci Technol 36(2):137–143

    Article  CAS  Google Scholar 

  • Uenishi H, Kabuki T, Seto Y, Serizawa A, Nakajima H (2012) Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int Dairy J 22(1):24–30

    Article  CAS  Google Scholar 

  • Vercruysse L, Smagghe G, van der Bent A, van Amerongen A, Ongenaert M, Van Camp J (2009) Critical evaluation of the use of bioinformatics as a theoretical tool to find high-potential sources of ACE inhibitory peptides. Peptides 30(3):575–582

    Article  CAS  PubMed  Google Scholar 

  • Zafar SK, Iqbal S, Mumtaz M, Ali SK, Ali ST (2018) Inhibitory mechanism exhibited by phenol-based natural products against DNA polymerase [alpha] from Psoralea corylifolia by molecular docking. J Chem Soc Pak 40(6):1089–1092

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Xiuxiu Zhang for valuable discussion and assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, formal analysis, investigation and writing—original draft: YG. Conceptualization, formal analysis, investigation and writing—review and editing: XL. Writing—review and editing: XQ. Resources and supervision: YM. Writing—review and editing: ECYC.

Corresponding authors

Correspondence to Ying Ma or Eric Chun Yong Chan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflict of interest.

Informed consent

No informed consent is required for this study.

Additional information

Handling Editor: Alexandre de Brevern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Li, X., Qi, X. et al. In silico identification of novel ACE and DPP-IV inhibitory peptides derived from buffalo milk proteins and evaluation of their inhibitory mechanisms. Amino Acids 55, 161–171 (2023). https://doi.org/10.1007/s00726-022-03202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-022-03202-z

Keywords

Navigation