Skip to main content
Log in

Dietary L-arginine supplementation during days 14–25 of gestation enhances aquaporin expression in the placentae and endometria of gestating gilts

  • Short Communication
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study tested the hypothesis that dietary L-arginine (Arg) supplementation to pregnant gilts enhanced the expression of water channel proteins [aquaporins (AQPs)] in their placentae and endometria. Gilts were fed twice daily 1 kg of a corn and soybean meal-based diet supplemented with 0.0%, 0.4%, or 0.8% Arg between Days 14 and 25 of gestation. On Days 25 and 60 of gestation, gilts were hysterectomized to obtain placentae and endometria. On Day 25 of gestation, supplementation with 0.4% Arg increased (P < 0.05) the abundance of placental AQP9 protein, whereas supplementation with 0.8% Arg increased (P < 0.05) placental AQP1 and AQP9 proteins, compared with controls. On Day 60 of gestation, supplementation with 0.4% Arg increased (P < 0.05) endometrial AQP1 protein, whereas supplementation with 0.8% Arg increased (P < 0.05) endometrial AQP5 and AQP9 proteins. Supplementation with 0.8% Arg increased the endometrial expression of AQP1, AQP5, and AQP9 proteins located in the luminal epithelium and glandular epithelium of endometria, and placental transport of 3H2O. Collectively, these results indicate that dietary Arg supplementation stimulates the expression of selective AQPs in porcine placenta and endometria, thereby enhancing water transport from mother to fetus and expanding the chorioallantoic membranes during the period of placentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels - from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson J, Brown N, Mahendroo MS, Reese J (2006) Utilization of different aquaporin water channels in the mouse cervix during pregnancy and parturition and in models of preterm and delayed cervical ripening. Endocrinology 147:130–140

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Goldstein MH, Barron DH (1981) Water and electrolyte transport by pig chorioallantois. In: Mastroainni L, Biggers JD (eds) Fertilization and embryonic development in vitro. Plenum, New York, pp 200–221

    Google Scholar 

  • Bazer FW, Thatcher WW, Martinat-Botte F, Terqui M (1988) Conceptus development in large white and prolific Chinese Meishan pigs. J Reprod Infertil 84:37–42

    Article  CAS  Google Scholar 

  • Bazer FW, Kim J, Song G, Ka H, Tekwe CD, Wu G (2012) Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development. Ann NY Acad Sci 1271:88–96

    Article  PubMed  CAS  Google Scholar 

  • Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G (2018) Mechanisms for the establishment and maintenance of pregnancy: synergies from scientific collaborations. Biol Reprod 99:225–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Beall MH, van den Wijngaard JP, van Gemert MJ, Ross MG (2007a) Amniotic fluid water dynamics. Placenta 28:816–823

    Article  PubMed  CAS  Google Scholar 

  • Beall MH, Wang S, Yang B, Chaudhri N, Amidi F, Ross MG (2007b) Placental and membrane aquaporin water channels: correlation with amniotic fluid volume and composition. Placenta 28:421–428

    Article  PubMed  CAS  Google Scholar 

  • Beaumont M, Blachier F (2020) Amino acids in intestinal physiology and health. Adv Exp Med Biol 1265:1–20

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Davila AM, Benamouzig R, Tome D (2011) Channelling of arginine in NO and polyamine pathways in colonocytes and consequences. Front Biosci (landmark Ed) 16:1331–1343

    Article  CAS  Google Scholar 

  • Burton GJ, Fowden AL (2012) The placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta 33:S23–S27

    Article  PubMed  CAS  Google Scholar 

  • Damiano A, Zotta E, Goldstein J, Reisin I, Ibarra C (2001) Water channel proteins AQP3 and AQP9 are present in syncytiotrophoblast of human term placenta. Placenta 22:776–781

    Article  PubMed  CAS  Google Scholar 

  • Damiano AE (2011) Water channel proteins in the human placenta and fetal membranes. Placenta 32(Suppl 2):S207-211

    Article  PubMed  CAS  Google Scholar 

  • Enders AC, Carter AM (2004) What can comparative studies of placental structure tell us-a review. Placenta 18:S3–S9

    Article  CAS  Google Scholar 

  • Gao KG, Jiang ZY, Lin YC, Zheng CT, Zhou GL, Chen F, Yang L, Wu GY (2012) Dietary L-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42:2207–2214

    Article  PubMed  CAS  Google Scholar 

  • Geisert RD, Schmitt RAM (2002) Early embryonic survival in the pig: can it be improved? J Anim Sci 80:E54–E65

    Google Scholar 

  • Hasegawa H, Lian SC, Finkbeiner WE, Verkman AS (1994) Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am J Physiol 266:C893-903

    Article  PubMed  CAS  Google Scholar 

  • Herrera M, Garvin JL (2011) Aquaporins as gas channels. Pflugers Arch 4:623–630

    Article  CAS  Google Scholar 

  • Johnson RK, Nielsen MK, Casey DS (1999) Responses in ovulation rate, embryonal survival, and litter traits in swine to 14 generations of selection to increase litter size. J Anim Sci 77:541–557

    Article  PubMed  CAS  Google Scholar 

  • Katada R, Sugimoto K, Yoshida M, Matsumoto H (2014) Ethanol increases astrocyte aquaporin-4 expression under hyper-sodium condition. Nihon Arukoru Yakubutsu Igakkai Zasshi 49:188–194

    PubMed  CAS  Google Scholar 

  • Krane CM, Goldstein DL (2007) Comparative functional analysis of aquaporins/glyceroporins in mammals and anurans. Mamm Genome 18:452–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumari SS, Varadaraj K (2014) Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration. Biochem Biophys Res Commun 452:986–991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lager S, Powell TL (2012) Regulation of nutrient transport across the placenta. J Pregnancy 2012:179827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, Wu G (2011) Parenteral administration of L-arginine enhances fetal survival and growth in sheep carrying multiple fetuses. J Nutr 141:849–855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li XL, Bazer FW, Johnson GA, Burghardt RC, Erikson DW, Frank JW, Spencer TE, Shinzato I, Wu GY (2010) Dietary supplementation with 0.8% L-arginine between days 0 and 25 of gestation reduces litter size in gilts. J Nutr 140:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Bazer FW, Johnson GA, Burghardt RC, Frank JW, Dai ZL, Wang JJ, Wu ZL, Shinzato I, Wu GY (2014) Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 46:375–384

    Article  PubMed  CAS  Google Scholar 

  • Mann SE, Dvorak N, Gilbert H, Taylor RN (2006) Steady-state levels of aquaporin 1 mRNA expression are increased in idiopathic polyhydramnios. Am J Obstet Gynecol 194:884–887

    Article  PubMed  CAS  Google Scholar 

  • Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, Kim SW (2007) Dietary L-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    Article  PubMed  CAS  Google Scholar 

  • Pope WF (1994) Embryonic mortality in swine. In: Zavy M, Geisert R (eds) Embryonic mortality in domestic species. CRC Press, Boca Raton, pp 53–77

    Google Scholar 

  • Richard C, Gao J, Brown N, Reese J (2003) Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 144:1533–1541

    Article  PubMed  CAS  Google Scholar 

  • Rosario FJ, Kanai Y, Powell TL, Jansson T (2013) Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J Physiol 591:609–625

    Article  PubMed  CAS  Google Scholar 

  • Sibley C, Glazier J, D’Souza S (1997) Placental transporter activity and expression in relation to fetal growth. Exp Physiol 82:389–402

    Article  PubMed  CAS  Google Scholar 

  • Skowronski MT, Kwon T-H, Nielsen S (2009) Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. J Histochem Cytochem 57:61–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stulc J (1997) Placental transfer of inorganic ions and water. Physiol Rev 77:805–836

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE (2005) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Li XL, Satterfield MC, Spencer TE (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195-204

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Satterfield MC, Li X, Wang X, Johnson GA, Burghardt RC, Dai Z, Wang J, Wu Z (2013) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Herring C, Seo H, Dai ZL, Wang JJ, Wu ZL, Wang XL (2017) Functional amino acids in the development of the pig placenta. Mol Reprod Dev 84:879–882

    Article  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Hou Y (2018) Board-invited review: arginine nutrition and metabolism in growing, gestating, and lactating swine. J Anim Sci 96:5035–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan C, Zhu Y, Zhang X, Chen X, Zheng W, Yang J (2014) Down-regulated aquaporin 5 inhibits proliferation and migration of human epithelial ovarian cancer 3AO cells. J Ovarian Res 7:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng X, Wang F, Fan X, Yang W, Zhou B, Li P, Yin Y, Wu G, Wang J (2008) Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr 138:1421–1425

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Tan YJ, Qu F, Sheng JZ, Huang HF (2012a) Functions of water channels in male and female reproductive systems. Mol Aspects Med 33:676–690

    Article  PubMed  CAS  Google Scholar 

  • Zhang YW, Ding SD, Shen Q, Wu J, Zhu XQ (2012b) The expression and regulation of aquaporins in placenta and fetal membranes. Front Biosci 17:2371–2382

    Article  CAS  Google Scholar 

  • Zhang D, Xu G, Zhang R, Zhu Y, Gao H, Zhou C, Sheng J, Huang H (2016) Decreased expression of aquaporin 2 is associated with impaired endometrial receptivity in controlled ovarian stimulation. Reprod Fertil Dev 28:499–506

    Article  PubMed  CAS  Google Scholar 

  • Zhang JM, He WL, Yi D, Zhao D, Song Z, Hou YQ, Wu G (2019) Regulation of protein synthesis in porcine mammary epithelial cells by L-valine. Amino Acids 51:717–726

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Lai A, Dong W (2017) Expression and significance of aquaporin-2 in human ectocervical-vaginal epithelial cells. Gynecol Obstet Inves 78:186–193

    Article  CAS  Google Scholar 

  • Zhu XQ, Jiang SS, Zhu XJ, Zou SW, Wang YH, Hu YC (2009) Expression of aquaporin 1 and aquaporin 3 in fetal membranes and placenta in human term pregnancies with oligohydramnios. Placenta 30:670–676

    Article  PubMed  CAS  Google Scholar 

  • Zhu XQ, Jiang SS, Hu YC, Zheng XQ, Zou SW, Wang YH, Zhu XJ (2010) The expression of aquaporin 8 and aquaporin 9 in fetal membranes and placenta in term pregnancies complicated by idiopathic polyhydramnios. Early Hum Dev 86:657–663

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Jiang ZY, Bazer FW, Johnson GA, Burghardt RC, Wu G (2015) Aquaporins in the female reproductive system of mammals. Front Biosci 20:838–871

    Article  Google Scholar 

Download references

Acknowledgements

We thank students and technicians in our laboratories for assistance. The current address of Cui Zhu is School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China. The current address of Xilong Li is Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China. This work was supported by Agriculture and Food Research Initiative Competitive Grants (#2015-67015-23276) from the USDA National Institute of Food and Agriculture, and Texas A&M AgriLife Research (H-8200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Institutional Animal Care and Use Committee of Texas A&M University.

Informed consent

No informed consent is required for this study.

Additional information

Handling editor: E. I. Closs

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Li, X., Bazer, F.W. et al. Dietary L-arginine supplementation during days 14–25 of gestation enhances aquaporin expression in the placentae and endometria of gestating gilts. Amino Acids 53, 1287–1295 (2021). https://doi.org/10.1007/s00726-021-03038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-021-03038-z

Keywords

Navigation