Skip to main content
Log in

Biochemistry of plants N–heterocyclic non-protein amino acids

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Plants catalyze the biosynthesis of a large number of non-protein amino acids, which are usually toxic for other organisms. In this review, the chemistry and metabolism of N–heterocyclic non-protein amino acids from plants are described. These N–heterocyclic non-protein amino acids are composed of β-substituted alanines and include mimosine, β–pyrazol–1–yl–l–alanine, willardiine, isowillardiine, and lathyrine. These β-substituted alanines consisted of an N–heterocyclic moiety and an alanyl side chain. This review explains how these individual moieties are derived from their precursors and how they are used as the substrate for biosynthesizing the respective N–heterocyclic non-protein amino acids. In addition, known catabolism and possible role of these non-protein amino acids in the actual host is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams R, Cristol SJ, Anderson AA, Albert AA (1945) The structure of leucenol. I. J Am Chem Soc 67:89–92

    Article  CAS  Google Scholar 

  • Ahmmad MAS, Maskall CS, Brown EG (1984) Partial purification and properties of willardiine and isowillardiine synthase activity from Pisum sativum. Phytochemistry 23:265–270

    Article  CAS  Google Scholar 

  • Al-Baldawi NF, Brown EG (1983) Metabolism of [6-14C]orotate by shoots of Pisum sativum, Phaseolus vulgaris and Lathyrus tingitanus. Phytochemistry 22:1925–1928

    Article  CAS  Google Scholar 

  • Allison MJ, Mayberry WR, McSweeney CS, Stahl DA (1992) Synergistes jonesii, gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Syst Appl Microbiol 15:522–529

    Article  CAS  Google Scholar 

  • Ashworth TS, Brown EG, Roberts FM (1972) Biosynthesis of willardiine and isowillardiine in germinating pea seeds and seedlings. Biochem J 129:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awaya JD, Fox PM, Borthakur D (2005) pyd genes of Rhizobium sp. strain TAL1145 are required for degradation of 3-hydroxy-4-pyridone, an aromatic intermediate in mimosine metabolism. J Bacteriol 187:4480–4487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell EA (1961) Isolation of a new amino acid from Lathyrus tingitanus. Biochem Biophys Acta 47:602–603

    Article  CAS  Google Scholar 

  • Bell EA (1962) The isolation of l-homoarginine from seeds of Lathyrus cicera. Biochem J 85:91–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell EA (1964) The isolation of γ-hydroxyhomoarginine, as its lactone, from seeds of Lathyrus tingitanus, its biosynthesis and distribution. Biochem J 91:358–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borthakur D, Soedarjo M, Fox PM, Webb DT (2003) The mid genes of Rhizobium sp. strain TAL1145 are required for degradation of mimosine into 3-hydroxy-4-pyridone and are inducible by mimosine. Microbiology 149:537–546

    Article  CAS  PubMed  Google Scholar 

  • Brown EG (1998) Pyrazoles. In: Brown EG (ed) Ring nitrogen and key biomolecules: the biochemistry of N-heterocycles. Springer, Dordrecht, pp 60–67

    Chapter  Google Scholar 

  • Brown EG, Al-Baldowi NF (1977) Biosynthesis of the pyrimidinyl amino acid lathyrine by Lathyrus tingitanus L. Biochem J 164:589–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EG, Mangat BS (1969) Structure of a pyrimidine amino acid from pea seedlings. Biochem Biophys Acta 177:427–433

    Article  CAS  PubMed  Google Scholar 

  • Brown EG, Mohamad J (1990) Biosynthesis of lathyrine; a novel synthase activity. Phytochemistry 29:3117–3121

    Article  CAS  Google Scholar 

  • Brown EG, Turan Y (1995) Pyrimidine metabolism and secondary product formation; biogenesis of albizziine, 4-hydroxyhomoarginine and 2,3-diaminopropanoic acid. Phytochemistry 40:763–771

    Article  CAS  Google Scholar 

  • Brown EG, Flayeh KAM, Gallon JR (1982) The biosynthetic origin of the pyrazole moiety of β-pyrazol-1-yl-L-alanine. Phytochemistry 21:863–867

    Article  CAS  Google Scholar 

  • Cederbaum AI, Rubin E (1974) Effects of pyrazole, 4-bromopyrazole and 4-methylpyrazole on mitochondrial function. Biochem Pharmacol 23:203–213. https://doi.org/10.1016/0006-2952(74)90411-0

    Article  CAS  PubMed  Google Scholar 

  • Chang LT (1960) The effect of mimosine on alkaline phosphatase of mouse kidney. J Formos Med Assoc 59:108–114

    Google Scholar 

  • Chang H-C, Lee T-H, Chuang L-Y, Yen M-H, Hung W-C (1999) Inhibitory effect of mimosine on proliferation of human lung cancer cells is mediated by multiple mechanisms. Cancer Lett 145:1–8. https://doi.org/10.1016/S0304-3835(99)00209-8

    Article  CAS  PubMed  Google Scholar 

  • Crounse RG, Maxwell JD, Blank H (1962) Inhibition of growth of hair by mimosine. Nature 194:694–695

    Article  CAS  PubMed  Google Scholar 

  • D’mello JPF, (1995) Toxicity-of non-protein amino acids from plants. In: Wallsgrove RM (ed) Amino acids and their derivatives in higher plants. Cambridge University Press, Cambridge, pp 145–153

    Chapter  Google Scholar 

  • da Rodrigues-Corrêa KC, S, Honda MDH, Borthakur D, Fett-Neto AG, (2019) Mimosine accumulation in Leucaena leucocephala in response to stress signaling molecules and acute UV exposure. Plant Physiol Biochem 135:432–440. https://doi.org/10.1016/j.plaphy.2018.11.018

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Gold B, Vishwanatha JK, Rhode SL (1994) Mimosine inhibits viral DNA synthesis through ribonucleotide reductase. Virology 205:210–216

    Article  CAS  PubMed  Google Scholar 

  • Dewreede S, Wayman O (1970) Effect of mimosine on the rat fetus. Teratology 3:21–27

    Article  CAS  PubMed  Google Scholar 

  • Dunnill PM, Fowden L (1963) The biosynthesis of β-pyrazol-l-ylalanine. J Exp Bot 14:237–248

    Article  CAS  Google Scholar 

  • Fowden L (1964) The chemistry and metabolism of recently isolated amino acids. Annu Rev Biochem 33:173–204

    Article  CAS  PubMed  Google Scholar 

  • Frisch DM, Dunnill PM, Smith A, Fowden L (1967) The specificity of amino acid biosynthesis in the Cucurbitaceae. Phytochemistry 6:921–931

    Article  CAS  Google Scholar 

  • Frydas S, Papaioannou N, Papazahariadou M, Hatzistilianou M, Karagouni E, Trakatelli M, Brellou G, Petrarca C, Castellani ML, Conti P, Riccioni G, Patruno A, Grilli A (2005) Inhibition of MCP-1 and MIP-2 chemokines in Murine trichinellosis: effect of the anti-inflammatory compound l-mimosine. Int J Immunopathol Pharmacol 18:85–93. https://doi.org/10.1177/039463200501800110

    Article  CAS  PubMed  Google Scholar 

  • Gilbert DM, Neilson A, Miyazawa H, DePamphilis ML, Burhans WC (1995) Mimosine arrests DNA synthesis at replication forks by inhibiting deoxyribonucleotide metabolism. J Biol Chem 270:9597–9606

    Article  CAS  PubMed  Google Scholar 

  • Gupta RN, Spenser ID (1969) Biosynthesis of the piperidine nucleus. The mode of incorporation of lysine into pipecolic acid and into piperidine alkaloids. J Biol Chem 244:88–94

    Article  CAS  Google Scholar 

  • Hamilton RI, Donaldson LE, Lambourne LJ (1968) Enlarged thyroid glands in calves born to heifers fed a sole diet of Leucaena leucocephala. Aust Vet J 44:484

    Article  Google Scholar 

  • Harun-Ur-Rashid Md, Iwasaki H, Parveen S, Oogai S, Fukuta M, Hossain MdA, Anai T, Oku H (2018) Cytosolic cysteine synthase switch cysteine and mimosine production in Leucaena leucocephala. Appl Biochem Biotechnol 186:613–632. https://doi.org/10.1007/s12010-018-2745-z

    Article  CAS  Google Scholar 

  • Hashiguchi H, Takahashi H (1977) Inhibition of two copper-containing enzymes, tyrosinase and dopamine β-hydroxylase, by l-Mimosine. Mol Pharmacol 13:362–367

    CAS  PubMed  Google Scholar 

  • Hegarty MP, Court RD, Thorne PM (1964) The determination of mimosine and 3, 4-dihydroxypyridine in biological material. Aust J Agric Res 15:168–179

    Article  CAS  Google Scholar 

  • Honda MDH, Borthakur D (2020) Mimosine facilitates metallic cation uptake by plants through formation of mimosine–cation complexes. Plant Mol Biol 102:431–445. https://doi.org/10.1007/s11103-019-00956-1

    Article  CAS  PubMed  Google Scholar 

  • Hurych J, Cchvapil M, Tichý M, Beniač F (1967) Evidence for a faster degradation of an atypical hydroxyproline and hydroxylysine deficient collagen formed under the effect of 2, 2′-dipyridyl. Eur J Biochem 3:242–247

    Article  CAS  PubMed  Google Scholar 

  • Hylin JW (1964) Biosynthesis of mimosine. Phytochemistry 3:161–164

    Article  CAS  Google Scholar 

  • Hylin JW (1969) Toxic peptides and amino acids in foods and feeds. J Agric Food Chem 17:492–496

    Article  CAS  Google Scholar 

  • Ikegami F, Kaneko M, Kamiyama H, Murakoshi I (1988) Purification and characterization of cysteine synthases from Citrullus vulgaris. Phytochemistry 27:697–701

    Article  CAS  Google Scholar 

  • Ikegami F, Mizuno M, Kihara M, Murakoshi I (1990) Enzymatic synthesis of the thyrotoxic amino acid mimosine by cysteine synthase. Phytochemistry 29:3461–3465

    Article  CAS  Google Scholar 

  • Jones RJ, Lowry JB (1984) Australian goats detoxify the goitrogen 3-hydroxy-4 (1H) pyridone (DHP) after rumen infusion from an Indonesian goat. Cell Mol Life Sci 40:1435–1436

    Article  CAS  Google Scholar 

  • Jones RJ, Blunt CG, Holmes JHG (1976) Enlarged thyroid glands in cattle grazing Leucaena pastures. Tropical Grasslands 10:113–116

    CAS  Google Scholar 

  • Joshi HS (1968) The effect of feeding on Leucaena leucocephala (Lam) de Wit. on reproduction in rats. Aust J Agric Res 19:341–352

    Article  Google Scholar 

  • Lalande M (1990) A reversible arrest point in the late G1 phase of the mammalian cell cycle. Exp Cell Res 186:332–339

    Article  CAS  PubMed  Google Scholar 

  • Lambein F, Van Parijs R (1968) Isolation and characterization of 1-alanyl-uracil (willardiine) and 3-alanyl-uracil (ISO-willardiine) from Pisum sativum. Biochem Biophys Res Commun 32:474–479

    Article  CAS  Google Scholar 

  • Li TK, Theorell H (1969) Human liver alcohol dehydrogenase: inhibition by pyrazole and pyrazole analogs. Acta Chem Scand 23:892–902

    Article  CAS  PubMed  Google Scholar 

  • Li X-W, Hu C-P, Li Y-J, Gao Y-X, Wang X-M, Yang J-R (2015) Inhibitory effect of l-mimosine on bleomycin-induced pulmonary fibrosis in rats: role of eIF3a and p27. Int Immunopharmacol 27:53–64. https://doi.org/10.1016/j.intimp.2015.04.048

    Article  CAS  PubMed  Google Scholar 

  • Lin JY, Shih YM, Ling KH (1962) Studies on the mechanism of toxicity of mimosine (β-(N-[3-hydroxypyridone])-α-aminopropionic acid). (1) Studies of the reactions of mimosine and pyridoxal 5-phosphate using the spectrophotometric method. J Formos Med Assoc 61:997–1003

    Google Scholar 

  • Lin JY, Lin KT, Ling KH (1963) Studies on the mechanism of toxicity of mimosine (β-(N-[3-hydroxy pyridone])-α-amino propionic acid). (3) The effect of mimosine on the activity of L-dopa decarboxylase, in vitro. J Formos Med Assoc 62:587

    Google Scholar 

  • Lowy PH (1953) The conversion of lysine to pipecolic acid by Phaseolus vulgaris. Arch Biochem Biophys 47:228–229

    Article  CAS  PubMed  Google Scholar 

  • MacDonald E, Marselos M, Nousiainen U (1975) Central and peripheral catecholamine levels after pyrazole treatment. Acta Pharmacol Toxicol 37:106–112

    Article  CAS  Google Scholar 

  • Marselos M, Törrönen R, Alakuijala P, Macdonald E (1977) Hepatic hydroxylation and glucuronidation in the rat after subacute pyrazole treatment. Toxicology 8:251–261. https://doi.org/10.1016/0300-483X(77)90013-0

    Article  CAS  PubMed  Google Scholar 

  • Moawad H, Bohlool BB (1984) Competition among Rhizobium spp. for nodulation of Leucaena leucocephala in two tropical soils. Appl Environ Microbiol 48:5–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakoshi I, Kuramoto H, Haginiwa J, Fowden L (1972) The enzymic synthesis of β-substituted alanines. Phytochemistry 11:177–182

    Article  CAS  Google Scholar 

  • Murakoshi I, Ikegami F, Ookawa N, Ariki T, Haginiwa J, Kuo Y-H, Lambein F (1978) Biosyntheses of the uracilylalanines willardiine and isowillardiine in higher plants. Phytochemistry 17:1571–1576

    Article  CAS  Google Scholar 

  • Negi VS, Borthakur D (2016) Heterologous expression and characterization of mimosinase from Leucaena leucocephala. In: Fett-Neto AG (ed) Biotechnology of plant secondary metabolism. Springer, Berlin, pp 59–77

    Chapter  Google Scholar 

  • Negi VS, Pal A, Singh R, Borthakur D (2011) Identification of species-specific genes from Leucaena leucocephala using interspecies suppression subtractive hybridisation. Ann Appl Biol 159:387–398

    Article  CAS  Google Scholar 

  • Negi VS, Bingham J-P, Li QX, Borthakur D (2013) midD-encoded ‘rhizomimosinase’from Rhizobium sp. strain TAL1145 is a C-N lyase that catabolizes L-mimosine into 3-hydroxy-4-pyridone, pyruvate and ammonia. Amino Acids 44:1537–1547

    Article  CAS  PubMed  Google Scholar 

  • Negi VS, Bingham J-P, Li QX, Borthakur D (2014) A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation. Plant Physiol 164:922. https://doi.org/10.1104/pp.113.230870

    Article  CAS  PubMed  Google Scholar 

  • Nguyen BCQ, Tawata S (2016) The chemistry and biological activities of mimosine: a review. Phytother Res 30:1230–1242. https://doi.org/10.1002/ptr.5636

    Article  CAS  PubMed  Google Scholar 

  • Noe FF, Fowden L (1959) α-Amino-β-(pyrazolyl-N) propionic acid: a new amino-acid from Citrullus vulgaris (water melon). Nature 184:69–70

    Article  CAS  PubMed  Google Scholar 

  • Noe FF, Fowden L (1960) β-Pyrazol-1-ylalanine, an amino acid from water-melon seeds(Citrullus vulgaris). Biochem J 77:543–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noji M, Murakoshi I, Saito K (1993) Evidence for identity of β-pyrazolealanine synthase with cysteine synthase in watermelon: formation of β-pyrazolealanine by cloned cysteine synthase in vitro and in vivo. Biochem Biophys Res Commun 197:1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Oogai S, Fukuta M, Watanabe K, Inafuku M, Oku H (2019) Molecular characterization of mimosinase and cystathionine β-lyase in the Mimosoideae subfamily member Mimosa pudica. J Plant Res 132:667–680. https://doi.org/10.1007/s10265-019-01128-4

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Negi VS, Borthakur D (2012) Efficient in vitro regeneration of Leucaena leucocephala using immature zygotic embryos as explants. Agrofor Syst 84:131–140

    Article  Google Scholar 

  • Peterkofsky B, Udenfriend S (1963) Conversion of proline to collagen hydroxyproline in a cell-free system from chick embryo. J Biol Chem 238:3966–3977

    Article  CAS  PubMed  Google Scholar 

  • Rao SLN, Ramachandran LK, Adiga PR (1963) The isolation and characterization of l-homoarginine from seeds of Lathyrus sativus. Biochemistry 2:298–300

    Article  CAS  PubMed  Google Scholar 

  • Reis PJ, Tunks DA, Hegarty MP (1975) Fate of mimosine administered orally to sheep and its effectiveness as a defleecing agent. Aust J Biol Sci 28:495–502

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal GA (1982) Plant nonprotein amino and imino acids: biological, biochemical, and toxicological properties. Academic Press, New York

    Google Scholar 

  • Smith TA (1970) Polyamine oxidase in higher plants. Biochem Biophys Res Commun 41:1452–1456

    Article  CAS  PubMed  Google Scholar 

  • Smith TA (1972) Purification and properties of the polyamine oxidase of barley plants. Phytochemistry 11:899–910

    Article  CAS  Google Scholar 

  • Smith TA (1976) Polyamine oxidase from barley and oats. Phytochemistry 15:633–636

    Article  CAS  Google Scholar 

  • Smith IK, Fowden L (1966) A study of mimsine toxicity in plants. J Exp Bot 17:750–761

    Article  CAS  Google Scholar 

  • Soedarjo M, Borthakur D (1996) Mimosine produced by the tree-legume Leucaena provides growth advantages to some Rhizobium strains that utilize it as a source of carbon and nitrogen. Plant Soil 186:87–92

    Article  CAS  Google Scholar 

  • Soedarjo M, Borthakur D (1998) Mimosine, a toxin produced by the tree-legume leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol Biochem 30:1605–1613

    Article  CAS  Google Scholar 

  • Soedarjo M, Hemscheidt TK, Borthakur D (1994) Mimosine, a toxin present in leguminous trees (Leucaena spp.), induces a mimosine-degrading enzyme activity in some Rhizobium strains. Appl Environ Microbiol 60:4268–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suda S (1960) On the physiological properties of mimosine. Bot Mag 73:142–147

    Article  Google Scholar 

  • Tang SY, Ling KH (1975) The inhibitory effect of mimosine on collagen synthesis. Toxicon 13:339–342

    Article  CAS  PubMed  Google Scholar 

  • Tangendjaja B, Lowry JB, Wills RBH (1986) Isolation of a mimosine degrading enzyme from leucaena leaf. J Sci Food Agric 37:523–526

    Article  CAS  Google Scholar 

  • Theorell H, Yonetani T, Sjöberg B (1969) On the effects of some heterocyclic compounds on the enzymic activity of liver alcohol dehydrogenase. Acta Chem Scand 23:255–260

    Article  CAS  PubMed  Google Scholar 

  • Tiwari HP, Penrose WR, Spenser ID (1967) Biosynthesis of mimosine: incorporation of serine and of α-aminoadipic acid. Phytochemistry 6:1245–1248

    Article  CAS  Google Scholar 

  • Upadhyay A, Chompoo J, Taira N, Fukuta M, Gima S, Tawata S (2011) Solid-Phase Synthesis of Mimosine Tetrapeptides and Their Inhibitory Activities on Neuraminidase and Tyrosinase. J Agric Food Chem 59:12858–12863. https://doi.org/10.1021/jf203494t

    Article  CAS  PubMed  Google Scholar 

  • Wayman O, Iwanaga HWI (1970) Fetal resorption in swine caused by Leucaena Leucocephala (Lam.) De Wit. in the diet. J Anim Sci 30:583–588

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Fang Y, Ding X, Liu H, Zhu J, Zou J, Xu X, Zhong Y (2012) Transient hypoxia-inducible factor activation in rat renal ablation and reduced fibrosis with l-mimosine. Nephrology 17:58–67. https://doi.org/10.1111/j.1440-1797.2011.01498.x

    Article  CAS  PubMed  Google Scholar 

  • Zinkernagel AS, Peyssonnaux C, Johnson RS, Nizet V (2008) Pharmacologic augmentation of hypoxia-inducible factor—1α with mimosine boosts the bactericidal capacity of phagocytes. J Infect Dis 197:214–217. https://doi.org/10.1086/524843

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulal Borthakur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent is required for this study.

Additional information

Handling editor: H. Hesse.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, V.S., Pal, A. & Borthakur, D. Biochemistry of plants N–heterocyclic non-protein amino acids. Amino Acids 53, 801–812 (2021). https://doi.org/10.1007/s00726-021-02990-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-021-02990-0

Keywords

Navigation