Skip to main content
Log in

Glycine supplementation to breast-fed piglets attenuates post-weaning jejunal epithelial apoptosis: a functional role of CHOP signaling

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study was conducted to test the hypothesis that preweaning  glycine supplementation to breast-fed piglets alleviated the post-weaning  apoptosis of jejunal epithelium through CHOP signaling. Seven-day-old sow-reared piglets were orally administrated with 0, 50, 100, or 200% of glycine intake from sow’s milk twice daily for 14 days and then were weaned at 21 days of age. Tissue samples were collected at 28 days of age for determining intestinal morphology, serum diamine oxidase (DAO) activity, abundances of proteins involved in ER stress and apoptosis. Glycine (100–200%) administration increased villus height, the ratio of villus height to crypt depth in the jejunum. Glycine supplementation (200%) enhanced average daily weight gain during the first 2 weeks post-weaning. Serum DAO activity and jejunal epithelium apoptosis were decreased, but the number of goblet cells in the jejunum was increased. Western blot analysis showed that 100–200% glycine enhanced the protein levels of occludin, claudin-1, and zonula occludens (ZO)-1 without affecting those of claudin-3, ZO-2, and ZO-3. Further studies showed that protein abundances of glucose-regulated protein 78 (BiP/GRP78) and p-IRE1α, instead of ATF6α, were reduced by glycine. Among the proteins related to apoptosis, abundances of CHOP and p53 were reduced, whereas those of Bcl-2 and Bcl-xL were enhanced in the jejunum of 100–200% glycine-supplemented piglets. Collectively, our results indicated that preweaning glycine supplementation improved the intestinal development of post-weaning piglets. The beneficial effect of glycine was associated with improved intestinal mucosal barrier and reduced apoptosis of enterocytes through CHOP signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin K, Li J, Chao WR, Dewhirst MW, Haroon ZA (2003) Dietary glycine inhibits angiogenesis during wound healing and tumor growth. Cancer Biol Ther 2(2):173–178

    Article  CAS  PubMed  Google Scholar 

  • Arrieta MC, Bistritz L, Meddings JB (2006) Alterations in intestinal permeability. Gut 55(10):1512–1520

    CAS  PubMed  Google Scholar 

  • Bauer E, Metzler-Zebeli BU, Verstegen MW, Mosenthin R (2011) Intestinal gene expression in pigs: effects of reduced feed intake during weaning and potential impact of dietary components. Nutr Res Rev 24(2):155–175

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Ghosh J, Sil PC (2012) Iron induces hepatocyte death via MAPK activation and mitochondria-dependent apoptotic pathway: beneficial role of glycine. Free Radic Res 46(10):1296–1307

    Article  CAS  PubMed  Google Scholar 

  • Birchenough GM, Johansson ME, Gustafsson JK, Bergstrom JH, Hansson GC (2015) New developments in goblet cell mucus secretion and function. Mucosal Immunol 8(4):712–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JM, Crenshaw JD, Polo J (2013) The biological stress of early weaned piglets. J Anim Sci Biotechno 4:19

    Article  Google Scholar 

  • Chen JQ, Ma XS, Yang Y, Dai ZL, Wu ZL, Wu G (2018) Glycine enhances expression of adiponectin and IL-10 in 3T3-L1 adipocytes without affecting adipogenesis and lipolysis. Amino Acids 50:629–640

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Wu Z, Hang S, Zhu W, Wu G (2015) Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 21(5):389–409

    Article  CAS  PubMed  Google Scholar 

  • de Aguiar Picanco E, Lopes-Paulo F, Marques RG, Diestel CF, Caetano CE, de Souza MV, Moscoso GM, Pazos HM (2011) L-arginine and glycine supplementation in the repair of the irradiated colonic wall of rats. Int J Colorectal Dis 26(5):561–568

    Article  Google Scholar 

  • Diestel CF, Marques RG, Lopes-Paulo F, Paiva D, Horst NL, Caetano CE, Portela MC (2007) Role of l-glutamine and glycine supplementation on irradiated colonic wall. Int J Colorectal Dis 22(12):1523–1529

    Article  PubMed  Google Scholar 

  • Fuchs SA, Peeters-Scholte CM, de Barse MM, Roeleveld MW, Klomp LW, Berger R, de Koning TJ (2012) Increased concentrations of both NMDA receptor co-agonists d-serine and glycine in global ischemia: a potential novel treatment target for perinatal asphyxia. Amino Acids 43(1):355–363

    Article  CAS  PubMed  Google Scholar 

  • Gilani S, Howarth GS, Kitessa SM, Tran CD, Forder REA, Hughes RJ (2017) New biomarkers for increased intestinal permeability induced by dextran sodium sulphate and fasting in chickens. J Anim Physiol Anim Nutr (Berl) 101(5):e237–e245

    Article  CAS  Google Scholar 

  • Hall JC (1998) Glycine. J Parenter Enteral Nutr 22(6):393–398

    Article  CAS  Google Scholar 

  • Hetz C, Chevet E, Oakes SA (2015) Proteostasis control by the unfolded protein response. Nat Cell Biol 17(7):829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6):900–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Wu G (2018) L-Glutamate nutrition and metabolism in swine. Amino Acids 50(11):1497–1510

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Yao K, Yin Y, Wu G (2016) Endogenous synthesis of amino acids limits growth, lactation, and reproduction in animals. Adv Nutr 7(2):331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CH, Xiao K, Luan ZS, Song J (2013) Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J Anim Sci 91(3):1094–1101

    Article  CAS  PubMed  Google Scholar 

  • Iurlaro R, Munoz-Pinedo C (2016) Cell death induced by endoplasmic reticulum stress. FEBS J 283(14):2640–2652

    Article  CAS  PubMed  Google Scholar 

  • Jacob T, Ascher E, Hingorani A, Kallakuri S (2003) Glycine prevents the induction of apoptosis attributed to mesenteric ischemia/reperfusion injury in a rat model. Surgery 134(3):457–466

    Article  PubMed  Google Scholar 

  • Jacobi SK, Odle J (2012) Nutritional factors influencing intestinal health of the neonate. Adv Nutr 3(5):687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134(3):625–630

    Article  CAS  PubMed  Google Scholar 

  • Kusche J, van Trotha U, Muhlberger G, Lorenz W (1974) The clinical-chemical application of the NADH test for the determination of diamine oxidase activity in human pregnancy. Agents Actions 4(3):188–189

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wu G (2018) Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50:29–38

    Article  CAS  PubMed  Google Scholar 

  • Li W, Sun K, Ji Y, Wu Z, Wang W, Dai Z, Wu G (2016) Glycine regulates expression and distribution of claudin-7 and ZO-3 Proteins in intestinal porcine epithelial cells. J Nutr 146(5):964–969

    Article  CAS  PubMed  Google Scholar 

  • Lin WC, Chuang YC, Chang YS, Lai MD, Teng YN, Su IJ, Wang CC, Lee KH, Hung JH (2012) Endoplasmic reticulum stress stimulates p53 expression through NF-kappaB activation. PLoS One 7(7):e39120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Zhang J, Ma B, Li K, Li X, Bai H, Yang Q, Zhu X, Ben J, Chen Q (2012) Glycine attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis in mice. Neurochem Int 61(5):649–658

    Article  CAS  PubMed  Google Scholar 

  • Marchiando AM, Graham WV, Turner JR (2010) Epithelial barriers in homeostasis and disease. Annu Rev Pathol 5:119–144

    Article  CAS  PubMed  Google Scholar 

  • Melendez-Hevia E, De Paz-Lugo P, Cornish-Bowden A, Cardenas ML (2009) A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. J Biosci 34(6):853–872

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi J, Miyamoto H, Goji T, Taniguchi T, Tomonari T, Sogabe M, Kimura T, Kitamura S, Okamoto K, Fujino Y, Muguruma N, Okahisa T, Takayama T (2015) Serum diamine oxidase activity as a predictor of gastrointestinal toxicity and malnutrition due to anticancer drugs. J Gastroen Hepatol 30(11):1582–1590

    Article  CAS  Google Scholar 

  • Moens E, Veldhoen M (2012) Epithelial barrier biology: good fences make good neighbours. Immunology 135(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odenwald MA, Turner JR (2013) Intestinal permeability defects: is it time to treat? Clin Gastroenterol H 11(9):1075–1083

    Article  Google Scholar 

  • Ospina-Rojas IC, Murakami AE, Oliveira CA, Guerra AF (2013) Supplemental glycine and threonine effects on performance, intestinal mucosa development, and nutrient utilization of growing broiler chickens. Poult Sci 92(10):2724–2731

    Article  CAS  PubMed  Google Scholar 

  • Petrat F, Drowatzky J, Boengler K, Finckh B, Schmitz KJ, Schulz R, de Groot H (2011) Protection from glycine at low doses in ischemia-reperfusion injury of the rat small intestine. Eur Surg Res 46(4):180–187

    Article  CAS  PubMed  Google Scholar 

  • Powell S, Bidner TD, Payne RL, Southern LL (2011) Growth performance of 20- to 50-kg pigs fed low-crude-protein diets supplemented with histidine, cystine, glycine, glutamic acid, or arginine. J Anim Sci 89(11):3643–3650

    Article  CAS  PubMed  Google Scholar 

  • Rhoads JM, Wu GY (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37(1):111–122

    Article  CAS  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  CAS  PubMed  Google Scholar 

  • Sheng YH, Triyana S, Wang R, Das I, Gerloff K, Florin TH, Sutton P, McGuckin MA (2013) MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol 6(3):557–568

    Article  CAS  PubMed  Google Scholar 

  • Stoffels B, Turler A, Schmidt J, Nazir A, Tsukamoto T, Moore BA, Schnurr C, Kalff JC, Bauer AJ (2011) Anti-inflammatory role of glycine in reducing rodent postoperative inflammatory ileus. Neurogastroenterol Motil 23(1):76–78

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Wu Z, Li W, Zhang C, Sun K, Ji Y, Wang B, Jiao N, He B, Wang W, Dai Z, Wu G (2015) Dietary l-leucine supplementation enhances intestinal development in suckling piglets. Amino Acids 47(8):1517–1525

    Article  CAS  PubMed  Google Scholar 

  • Sun KJ, Wu ZL, Ji Y, Wu G (2016) Glycine regulates protein turnover by activating protein kinase B/Mammalian target of rapamycin and by inhibiting MuRF1 and atrogin-1 gene expression in C2C12 myoblasts. J Nut 146:2461–2467

    Article  CAS  Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tossou MC, Liu H, Bai M, Chen S, Cai Y, Duraipandiyan V, Liu H, Adebowale TO, Al-Dhabi NA, Long L, Tarique H, Oso AO, Liu G, Yin Y (2016) Effect of high dietary tryptophan on intestinal morphology and tight junction protein of weaned pig. Biomed Res Int 2016:2912418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17(2):282–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45(3):463–477

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Dai Z, Wu Z, Lin G, Jia S, Hu S, Dahanayaka S, Wu G (2014a) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46(8):2037–2045

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu Z, Lin G, Hu S, Wang B, Dai Z, Wu G (2014b) Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells. J Nutr 144(10):1540–1548

    Article  CAS  PubMed  Google Scholar 

  • Wawryk-Gawda E, Chylinska-Wrzos P, Lis-Sochocka M, Chlapek K, Bulak K, Jedrych M, Jodlowska-Jedrych B (2014) P53 protein in proliferation, repair and apoptosis of cells. Protoplasma 251(3):525–533

    Article  CAS  PubMed  Google Scholar 

  • Weinberg JM, Bienholz A, Venkatachalam MA (2016) The role of glycine in regulated cell death. Cell Mol Life Sci 73(11–12):2285–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijtten PJ, van der Meulen J, Verstegen MW (2011) Intestinal barrier function and absorption in pigs after weaning: a review. Br J Nutr 105(7):967–981

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1(1):31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2013) Functional amino acids in nutrition and health. Amino Acids 45(3):407–411

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Poca Raton

    Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126(10):2578–2584

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004) Arginine nutrition in neonatal pigs. J Nutr 134(10 Suppl):2783S–2790S

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Lv Y, Li X, Zhao D, Yi D, Wang L, Li P, Chen H, Hou Y, Gong J, Wu G (2018) Establishment of a recombinant Escherichia coli-induced piglet diarrhea model. Front Biosci (Landmark Ed) 23:1517–1534

    Article  CAS  Google Scholar 

  • Yang H, Xiong X, Wang X, Tan B, Li T, Yin Y (2016) Effects of weaning on intestinal upper villus epithelial cells of piglets. PLoS One 11(3):e0150216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yi H, Jiang D, Zhang L, Xiong H, Han F, Wang Y (2016) Developmental expression of STATs, nuclear factor-kappaB and inflammatory genes in the jejunum of piglets during weaning. Int Immunopharmacol 36:199–204

    Article  CAS  PubMed  Google Scholar 

  • Yi D, Hou Y, Xiao H, Wang L, Zhang Y, Chen H, Wu T, Ding B, Hu CA, Wu G (2017) N-Acetylcysteine improves intestinal function in lipopolysaccharides-challenged piglets through multiple signaling pathways. Amino Acids 49(12):1915–1929

    Article  CAS  PubMed  Google Scholar 

  • Yi D, Li BC, Hou YQ, Wang L, Zhao D, Chen HB, Wu T, Zhou Y, Ding BY, Wu G (2018) Dietary supplementation with an amino acid blend enhances intestinal function in piglets. Amino Acids 50:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Wheeler MD, Li X, Froh M, Schemmer P, Yin M, Bunzendaul H, Bradford B, Lemasters JJ (2003) L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr Opin Clin Nutr Metab Care 6(2):229–240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 31572412, 31572410, 31625025, 31272451 and  31272450), the Zhengzhou 1125 Talent Program, Agriculture and Food Research Initiative Competitive Grants (2014-67015-21770, 2015-67015-23276 and 2016-67015-24958) from the USDA National Institute of Food and Agriculture, and Texas A&M AgriLife Research (H-8200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlong Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

The studies were approved by China Agricultural University Institutional Animal Science and Technology College and conducted according to the Guidelines for Experimental Animal Research of the Ministry of Science and Technology (Beijing, China).

Informed consent

All authors have read and approved the final manuscript.

Additional information

Handling Editor: E. Closs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Li, S., Wu, Z. et al. Glycine supplementation to breast-fed piglets attenuates post-weaning jejunal epithelial apoptosis: a functional role of CHOP signaling. Amino Acids 51, 463–473 (2019). https://doi.org/10.1007/s00726-018-2681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2681-9

Keywords

Navigation