Skip to main content
Log in

Dietary protein supplementation in the elderly for limiting muscle mass loss

Amino Acids Aims and scope Submit manuscript

Abstract

Supplementation with whey and other dietary protein, mainly associated with exercise training, has been proposed to be beneficial for the elderly to gain and maintain lean body mass and improve health parameters. The main objective of this review is to examine the evidence provided by the scientific literature indicating benefit from such supplementation and to define the likely best strategy of protein uptake for optimal objectified results in the elderly. Overall, it appears that an intake of approximately 0.4 g protein/kg BW per meal thus representing 1.2–1.6 g protein/kg BW/day may be recommended taking into account potential anabolic resistance. The losses of the skeletal muscle mass contribute to lower the capacity to perform activities in daily living, emphasizing that an optimal protein consumption may represent an important parameter to preserve independence and contribute to health status. However, it is worth noting that the maximal intake of protein with no adverse effect is not known, and that high levels of protein intake is associated with increased transfer of protein to the colon with potential deleterious effects. Thus, it is important to examine in each individual case the benefit that can be expected from supplementation with whey protein, taking into account the usual protein dietary intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Abbreviations

LBM:

Lean body mass

MPB:

Muscle protein breakdown

mTOR:

Mammalian target of rapamycin

MPS:

Muscle protein synthesis

IGF-1:

Insulin growth factor 1

p70S6k:

Protein kinase p70S6

WPI:

Whey protein

EAA:

Essential amino acids

BCAA:

Branched-chain amino acids

FSR:

Fractional synthesis rate

References

  • Andriamihaja M, Davila AM, Eklou-Lawson M et al (2010) Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. Am J Physiol Gastrointest Liver Physiol 299:G1030–G1037

    Article  CAS  PubMed  Google Scholar 

  • Andriamihaja M, Guillot A, Svendsen A et al (2013) Comparative efficiency of microbial enzymes preparations versus pancreatin for in vitro alimentary protein digestion. Amino Acids 44:563–572

    Article  CAS  PubMed  Google Scholar 

  • Andriamihaja M, Lan A, Beaumont M et al (2015) The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic Biol Med 85:219–227

    Article  CAS  PubMed  Google Scholar 

  • Areta J, Burke L, Camera D et al (2014) Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Endocrinol Metab 306:E989–E997

    Article  CAS  PubMed  Google Scholar 

  • Argilés JM, Campos N, Lopez-Pedrosa JM et al (2016) Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc 17(9):789–796

    Article  PubMed  Google Scholar 

  • Arnal MA, Mosoni L, Boirie Y et al (1999) Protein pulse feeding improves protein retention in elderly women. Am J Clin Nutr 69:1202–1208

    CAS  PubMed  Google Scholar 

  • Atherton PJ, Smith K (2012) Muscle protein synthesis in response to nutrition and exercise. J Physiol 590(5):1049–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baar K, Esser K (1999) Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276:C120–C127

    CAS  PubMed  Google Scholar 

  • Baer DJ, Stote KS, Paul DR et al (2011) Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J Nutr 141(8):1489–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkoukis H (2016) Muscle building and maintenance in the elderly: the use of protein. Curr Nutr Rep. doi:10.1007/s13668-016-0163-9

    Google Scholar 

  • Bauer J et al (2013) Evidenced-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 14:542–559

    Article  PubMed  Google Scholar 

  • Beamount M, Andriamihaja M, Lan A et al (2016) Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: the adaptive response. Free Radic Biol Med 93:155–164

    Article  CAS  Google Scholar 

  • Berner L, Becker G, Wise M et al (2013) Characterization of dietary protein among older adults in the United States: amount, animal sources, and meal patterns. J Acad Nutr Diet 113:809–815

    Article  PubMed  Google Scholar 

  • Biolo G, Williams BD, Fleming RY et al (1999) Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48(5):949–957

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Leclercq-Meyer V, Marchand J et al (1989a) Stimulus-secretion coupling of arginine-induced insulin release. Functional response of islets to l-arginine and l-ornithine. Biochim Biophys Acta 1013:144–151

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Mourtada A, Sener A et al (1989b) Stimulus-secretion coupling of arginine-induced insulin release. Uptake of metabolized and non-metabolized cationic amino acids by pancreatic islets. Endocrinology 124:134–141

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Lancha AH Jr, Boutry C et al (2010) Alimentary proteins, amino acids, and cholesterolemia. Amino Acids 38:15–22

    Article  CAS  PubMed  Google Scholar 

  • Bohe J, Low JF, Wolfe RR et al (2001) Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol 532:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boirie Y, Gachon P, Beaufrere B (1997) Splanchnic and whole-body leucine kinetics in young and elderly men. Am J Clin Nutr 65:489–495

    CAS  PubMed  Google Scholar 

  • Borsheim E, Cree MG, Tipton KD et al (2004) Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J Appl Physiol 96:674–678

    Article  CAS  PubMed  Google Scholar 

  • Bos C, Metges CC, Gaudichon C et al (2003) Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr 133:1308–1315

    CAS  PubMed  Google Scholar 

  • Bouillanne O, Curis E, Hamon-Vilcot B et al (2013) Impact of protein pulse feeding on lean mass in malnourished and at-risk hospitalized elderly patients: a randomized controlled trial. Clin Nutr 32:186–192

    Article  CAS  PubMed  Google Scholar 

  • Breen L, Phillips SM (2011) Skeletal muscle protein metabolism in the elderly: interventions to counteract the ‘anabolic resistance’ of ageing. Nutr Metab 8:68

    Article  CAS  Google Scholar 

  • Breen L, Stokes KA, Churchward-Venne TA et al (2013) Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J Clin Endocrinol Metab 98:2604–2612

    Article  CAS  PubMed  Google Scholar 

  • Burd NA, Holwerda AM, Selby KC et al (2010a) Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol 588:3119–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burd NA, West DW, Staples AW et al (2010b) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5:e12033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burd NA, Yang Y, Moore DR et al (2012) Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men. Br J Nutr 108:958–962

    Article  CAS  PubMed  Google Scholar 

  • Burd NA, Gorissen SH, van Loon LJC (2013) Anabolic resistance of muscle protein synthesis with aging. Exerc Sport Sci Rev 41(3):169–173

    Article  PubMed  Google Scholar 

  • Burke LM, Winter JA, Cameron-Smith D et al (2012) Effect of intake of different dietary protein sources on plasma amino acid profiles at rest and after exercise. Int J Sport Nutr Exerc Metab 22:452–462

    Article  CAS  PubMed  Google Scholar 

  • Calvani R, Miccheli A, Landi F et al (2013) Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J Frailty Aging 2(1):38–53

    PubMed  PubMed Central  Google Scholar 

  • Carbone JW, McClung JP, Pasiakos SM (2012) Skeletal muscle responses to negative energy balance: effects of dietary protein. Adv Nutr 3:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cermak NM, Res PT, Groot LC et al (2012) Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr 96(6):1454–1464

    Article  CAS  PubMed  Google Scholar 

  • Chow LS, Albright RC, Bigelow ML et al (2006) Mechanism of insulin’s anabolic effect on muscle: measurements of muscle protein synthesis and breakdown using aminoacyl-tRNA and other surrogate measures. Am J Physiol Endocrinol Metab 291:E729–E736

    Article  CAS  PubMed  Google Scholar 

  • Churchward-Venne TA, Burd NA, Phillips SM (2012) Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutr Metab (Lond) 9:40

    Article  CAS  PubMed Central  Google Scholar 

  • Churchward-Venne TA, Breen L, Di Donato DM et al (2014a) Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. Am J Clin Nutr 99(2):276–286

    Article  CAS  PubMed  Google Scholar 

  • Churchward-Venne TA, Breen L, Phillips SM (2014b) Alterations in human muscle protein metabolism with aging: protein and exercise as countermeasures to offset sarcopenia. BioFactors 40(2):199–205

    Article  CAS  PubMed  Google Scholar 

  • Coker RH, Wolfe RR (2012) Bedrest and sarcopenia. Curr Opin Clin Nutr Metab Care 15:7–11

    Article  PubMed  Google Scholar 

  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuthbertson D, Smith K, Babraj J et al (2005) Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19:422–424

    CAS  PubMed  Google Scholar 

  • D’Souza RF, Markworth JF, Figueiredo VC et al (2014) Dose-dependent increases in p70S6K phosphorylation and intramuscular branched-chain amino acids in older men following resistance exercise and protein intake. Physiol Rep 2(8):e12112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Silva AT, de Oliveira DY, Ferreira SJ et al (2014) Sarcopenia according to the european working group on sarcopenia in older people (EWGSOP) versus Dynapenia as a risk factor for disability in the elderly. J Nutr Health Aging 18(5):547–553

    Article  Google Scholar 

  • Dai ZL, Li XL, Xi PB et al (2012) Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Daly RM, Connell SL, Mundell NL et al (2014) Protein-enriched diet, with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass and muscle strength and reduces circulating IL-6 concentrations in elderly women: a cluster randomized controlled trial. Am J Clin Nutr 99:899–910

    Article  CAS  PubMed  Google Scholar 

  • Damas F, Phillips S, Vechin FC et al (2015) A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med 45(6):801–807

    Article  PubMed  Google Scholar 

  • Dardevet D, Rémond D, Peyron MA et al (2012) Muscle wasting and resistance of muscle anabolism: the “anabolic threshold concept” for adapted nutritional strategies during sarcopenia. Sci World J 2012:269531

    Article  Google Scholar 

  • Davila AM, Blachier F, Gotteland M et al (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68:95–107

    Article  CAS  PubMed  Google Scholar 

  • Deer RR, Volpi E (2015) Protein intake and muscle function in older adults. Curr Opin Clin Nutr Metab Care 18(3):248–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFronzo R, Bonadonna R, Ferrannini E (1992) Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15(3):318–368

    Article  CAS  PubMed  Google Scholar 

  • Deutz N, Wolfe R (2013) Is there a maximal anabolic response to protein intake with a meal? Clin Nutr 32(2):309–313

    Article  CAS  PubMed  Google Scholar 

  • Devries MC, Phillips SM (2015) Supplemental protein in support of muscle mass and health: advantage whey. J Food Sci 80:A8–A15

    Article  CAS  PubMed  Google Scholar 

  • Devries MC, Breen L, Von Allmen M et al (2015) Low-load resistance training during step-reduction attenuates declines in muscle mass and strength and enhances anabolic sensitivity in older men. Physiol Rep 3(8):e12493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dickinson JM, Rasmussen BB (2011) Essential amino acid sensing, signaling, and transport in the regulation of human muscle protein metabolism. Curr Opin Clin Nutr Metab Care 14(1):83–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson JM, Fry CS, Drummond MJ et al (2011) Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 141(5):856–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson JM, Drummond MJ, Coben JR et al (2013) Aging differentially affects human skeletal muscle amino acid transporter expression when essential amino acids are ingested after exercise 32(2):273–280

    CAS  Google Scholar 

  • Duan Y, Li F, Tan K, Liu H et al (2015) Key mediators of intracellular amino acids signaling to mTORC1 activation. Amino Acids 47(5):857–867

    Article  CAS  PubMed  Google Scholar 

  • Durham W, Casperson SL, Dillon EL et al (2010) Age-related anabolic resistance after endurance-type exercise in healthy humans. FASEB J 24:4117–4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farnfield MM, Breen L, Carey KA et al (2012) Activation of mTOR signalling in young and old human skeletal muscle in response to combined resistance exercise and whey protein ingestion. Appl Physiol Nutr Metab 37:21–30

    Article  CAS  PubMed  Google Scholar 

  • Farsijani S, Morais JA, Payette H et al (2016) Relation between mealtime distribution of protein intake and lean mass loss in free-living older adults of the NuAge study. Am J Clin Nutr 104(3):694–703

    Article  CAS  PubMed  Google Scholar 

  • Fernandes T, Soci UPR, Alves CR et al (2008) Determinantes moleculares da hipertrofia do músculo esquelético mediados pelo treinamento físico: estudo de vias de sinalização. Revista Mackenzie de Educação Física e Esporte 7(1):169–188

    Google Scholar 

  • Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International Working Group on Sarcopenia. J Am Med Dir Assoc 12:249–256

    Article  PubMed  Google Scholar 

  • Fouillet H, Mariotti F, Gaudichon C et al (2002) Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. J Nutr 132:125–133

    CAS  PubMed  Google Scholar 

  • Francaux M, Demeulder B, Naslain D et al (2016) Aging reduces the activation of the mTORC1 pathway after resistance exercise and protein intake in human skeletal muscle: potential role of REDD1 and impaired anabolic sensitivity. Nutrients 8:47

    Article  PubMed Central  CAS  Google Scholar 

  • Fry CS, Drummond MJ, Glynn E et al (2011) Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle 1(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita S, Rasmussen BB, Cadenas JG et al (2006) Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am J Physiol Endocrinol Metab 291:E745–E754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita S, Glynn EL, Timmerman KL et al (2009) Supraphysiological hyperinsulinemia is necessary to stimulate skeletal muscle protein anabolism in older adults: evidence of a true age-related insulin resistance of muscle protein metabolism. Diabetologia 52(9):1889–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulgoni VL III (2008) Current protein intake in America: analysis of the National Health and Nutrition Examination Survey, 2003–2004. Am J Clin Nutr 87:1554S–1557S

    CAS  PubMed  Google Scholar 

  • Geirsdottir O, Arnarson A, Ramel A et al (2013) Dietary protein intake is associated with lean body mass in community-dwelling older adults. Nutr Res 33(8):608–612

    Article  CAS  PubMed  Google Scholar 

  • Gibson JA, Sladen GE, Dawson AM (1976) Protein absorption and ammonia production: the effects of dietary protein and removal of the colon. Br J Nutr 35:61–65

    Article  CAS  PubMed  Google Scholar 

  • Giezenaar C, Trahair LG, Rigda R et al (2015) Lesser suppression of energy intake by orally ingested whey protein in healthy older men compared with young controls. Am J Physiol Regul Integr Comp Physiol 309(8):R845–R854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillet C, Prod’homme M, Balage M et al (2004) Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J 18(13):1586–1587

    CAS  PubMed  Google Scholar 

  • Gumucio JP, Mendias CL (2013) Atrogin-1, MuRF-1, and sarcopenia. Endocrine 43(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Han SS, Kim KW, Kim KI et al (2010) Lean mass index: a better predictor of mortality than body mass index in elderly Asians. J Am Geriatr Soc 58:312–317

    Article  PubMed  Google Scholar 

  • Haran PH, Rivas DA, Fielding RA (2012) Role and potential mechanisms of anabolic resistance in sarcopenia. J Cachexia Sarcopenia Muscle 3:157–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartman JW, Tang JE, Wilkinson SB et al (2007) Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr 86:373–381

    CAS  PubMed  Google Scholar 

  • Hector AJ, Marcotte GR, Churchward-Venne TA et al (2015) Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults. J Nutr 145:246–252

    Article  PubMed  CAS  Google Scholar 

  • Houston D, Nicklas B, Ding J, Health ABC Study et al (2008) Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 87(1):150–155

    CAS  PubMed  Google Scholar 

  • Ijssennagger N, Belzer C, Hooiveld GJ et al (2015) Proposed mechanism of how microbiota facilitates heme-induced compensatory hyperproliferation. PNAS 112:10038–10043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen I (2011) The epidemiology of sarcopenia. Clin Geriatr Med 27:355–363

    Article  PubMed  Google Scholar 

  • Johnstone AM, Murison SD, Duncan JS et al (2005) Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr 82:941–948

    CAS  PubMed  Google Scholar 

  • Jurca R, Lamonte M, Barlow C et al (2005) Association of muscular strength with incidence of metabolic syndrome in men. Med Sci Sports Exer 37(11):1849–1855

    Article  Google Scholar 

  • Katsanos CS, Kobayashi H, Sheffield-Moore M et al (2005) Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr 82:1065–1073

    CAS  PubMed  Google Scholar 

  • Katsanos CS, Kobayashi H, Sheffield-Moore M et al (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 291:E381–E387

    Article  CAS  PubMed  Google Scholar 

  • Kim IY, Schutzler S, Schrader A et al (2015) Quantity of dietary protein intake, but not pattern of intake, affects net protein balance primarily through differences in protein synthesis in older adults. Am J Physiol Endocrinol Metab 308(1):E21–E28

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Jefferson LS (2006) New functions for amino acids: effects on gene transcription and translation. Am J Clin Nutr 83(2):500S–507S

    CAS  PubMed  Google Scholar 

  • Kumar V, Selby A, Rankin D et al (2009) Agerelated differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 587:211–217

    Article  CAS  PubMed  Google Scholar 

  • Lan A, Andriamihaja M, Blouin JM et al (2015) High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon. J Nutr Biochem 26(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Lancha AH Jr, Pereira-Lancha LO (2012) Nutrição e Metabolismo Aplicados à Atividade Motora. Atheneu, Sao Paulo

    Google Scholar 

  • Landi F, Liperoti R, Russo A et al (2012) Sarcopenia as a risk factor for falls in elderly individuals: results from the il SIRENTE study. Clin Nutr 31(5):652–658

    Article  PubMed  Google Scholar 

  • Landi F, Calvani R, Tosato M et al (2016) Anorexia of aging: risk factors, consequences, and potential treatments. Nutrients 8(2):69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Layman DK, Anthony TG, Rasmussen BB et al (2015) Defining meal requirements for protein to optimize metabolic roles of amino acids. Am J Clin Nutr 101:1330S–1338S

    Article  CAS  Google Scholar 

  • Liu X, Blouin JM, Santacruz A et al (2014) High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection. Am J Physiol 307(4):G459–G470

    CAS  Google Scholar 

  • Loenneke JP, Loprinzi PD, Murphy CH et al (2016) Per meal dose and frequency of protein consumption is associated with lean mass and muscle performance. Clin Nutr. doi:10.1016/j.clnu.2016.04.002

    PubMed  Google Scholar 

  • Luiking Y, Deutz N, Jakel M et al (2005) Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans. J Nutr 135:1080–1087

    CAS  PubMed  Google Scholar 

  • Malafarina V, Uriz-Otano F, Iniesta R et al (2013) Effectiveness of nutritional supplementation on muscle mass in treatment of sarcopenia in old age: a systematic review. J Am Med Dir Assoc 14(1):10–17

    Article  PubMed  Google Scholar 

  • Mamerow MM, Mettler JA, English KL et al (2014) Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr 144:876–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marckmann P, Osther P, Pedersen A et al (2015) High-protein diets and renal health. J Renal Nutr 25:1–5

    Article  CAS  Google Scholar 

  • Markofskia MM, Dickinson JM, Drummond MJ et al (2015) Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol 65:1–7

    Article  CAS  Google Scholar 

  • McGlory C, Phillips SM (2015) Exercise and the regulation of skeletal muscle hypertrophy. Prog Mol Biol Transl Sci 135:153–173

    Article  CAS  PubMed  Google Scholar 

  • Meisel H, Bockelmann W (1999) Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek 76:207–215

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, West DW et al (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol 113:71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, Bellamy L et al (2013) Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One 8:e78636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, Parise G (2014) Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS One 9(2):e89431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell CJ, Della Gatta PA, Petersen AC et al (2015a) Soy protein ingestion results in less prolonged p70S6 kinase phosphorylation compared to whey protein after resistance exercise in older men. J Int Soc Sports Nutr 12:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell WK, Phillips BE, Williams JP et al (2015b) A dose—rather than delivery profile-dependent mechanism regulates the “musclefull” effect in response to oral essential amino acid intake in young men. J Nutr 145(2):207–214

    Article  CAS  PubMed  Google Scholar 

  • Mitchell WK, Phillips BE, Williams JP et al (2015c) The impact of delivery profile of essential amino acids upon skeletal muscle protein synthesis in older men. Clinical efficacy of pulse vs. bolus supply. Am J Physiol Endocrinol Metab 309:E450–E457

    Article  CAS  PubMed  Google Scholar 

  • Moore DR, Robinson MJ, Fry JL et al (2009) Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr 89:161–168

    Article  CAS  PubMed  Google Scholar 

  • Moore D, Churchward-Venne T, Witard O et al. (2015) Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci 70(1):57–62

    Article  PubMed  Google Scholar 

  • Mouillé B, Robert V, Blachier F (2004) Adaptative increase of ornithine production and decrease of ammonia metabolism in rat colonocytes after hyperproteic diet ingestion. Am J Physiol Gastrointest Liver Physiol 287(2):G344–G351. doi:10.1152/ajpgi.00445.2003

    Article  PubMed  Google Scholar 

  • Mu C, Yang Y, Luo Z et al (2015) Metabolomic analysis reveals distinct profiles in the plasma and urine of rats fed a high-protein diet. Amino Acids 47:1225–1238

    Article  CAS  PubMed  Google Scholar 

  • Murphy CH, Churchward-Venne TA, Mitchell CJ et al (2015) Hypoenergetic diet-induced reductions in myofibrillar protein synthesis are restored with resistance training and balanced daily protein ingestion in older men. Am J Physiol Endocrinol Metab 308(9):E734–E743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy CH, Oikawa SY, Phillips SM et al (2016) Dietary protein to maintain muscle mass in aging: a case for per-meal protein recommendations. J Frailtry Aging 5:49–58

    CAS  Google Scholar 

  • Nair KS (2005) Aging muscle. Am J Clin Nutr 81:953–963

    CAS  PubMed  Google Scholar 

  • Norton LE, Layman DK, Bunpo P et al (2009) The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr 139:1103–1109

    Article  CAS  PubMed  Google Scholar 

  • Norton C, Toomey C, McCormack WG et al (2016) Protein supplementation at breakfast and lunch for 24 weeks beyond habitual intakes increases whole-body lean tissue mass in healthy older adults. J Nutr 146:65–69

    Article  PubMed  CAS  Google Scholar 

  • Paddon-Jones D, Rasmussen B (2009) Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 12:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paddon-Jones D, Sheffield-Moore M, Katsanos CS et al (2006) Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein. Exp Gerontol 41:215–219

    Article  CAS  PubMed  Google Scholar 

  • Pasiakos SM, Margolis LM, Orr JS (2015) Optimized dietary strategies to protect skeletal muscle mass during periods of unavoidable energy deficit. FASEB J 29(4):1136–1142

    Article  CAS  PubMed  Google Scholar 

  • Pennings B, Boirie Y, Senden JM et al (2011a) Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr 93:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Pennings B, Koopman R, Beelen M et al (2011b) Exercising before protein intake allows for greater use of dietary protein-derived amino acids for de novo muscle protein synthesis in both young and elderly men. Am J Clin Nutr 93(2):322–331

    Article  CAS  PubMed  Google Scholar 

  • Pennings B, Groen B, de Lange A et al (2012) Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men. Am J Physiol Endocrinol Metab 302(8):E992–E999

    Article  CAS  PubMed  Google Scholar 

  • Phillips SM (2004) Protein requirements and supplementation in strength sports. Nutrition 20:689–695

    Article  CAS  PubMed  Google Scholar 

  • Phillips SM (2009) Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects). Appl Physiol Nutr Metab 34:403–410

    Article  CAS  PubMed  Google Scholar 

  • Phillips SM (2014) A brief review of critical processes in muscular hypertrophy. Sports Med 441(1):S71–S77

    Article  Google Scholar 

  • Phillips SM, Tang JE, Moore DR (2009) The role of milk- and soy based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr 28(4):343–354

    Article  CAS  PubMed  Google Scholar 

  • Poortmans JR, Dellalieux O (2000) Do regular high protein diets have potential health risks on kidney function in athletes? Int J Sport Nutr Exerc Metab 10:28–38

    Article  CAS  PubMed  Google Scholar 

  • Poortmans JR, Carpentier A, Pereira-Lancha LO et al (2012) Protein turnover, amino acid requirements and recommendations for athletes and active populations. Braz J Med Biol Res 45(10):875–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramel A, Arnarson A, Geirsdottir OG et al (2013) Glomerular filtration rate after a 12-wk resistance exercise program with post-exercise protein ingestion in community dwelling elderly. J Nutrition 29(5):719–723

    Article  CAS  Google Scholar 

  • Rasmussen BB, Fujita S, Wolfe RR et al (2006) Insulin resistance of muscle protein metabolism in aging. FASEB J 20:768–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reitelseder S, Agergaard J, Doessing S et al (2011) Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. Am J Physiol Endocrinol Metab 300(1):E231–E242

    Article  CAS  PubMed  Google Scholar 

  • Rennie MJ (2009) Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl Physiol Nutr Metab 34:377–381

    Article  CAS  PubMed  Google Scholar 

  • Rennie MJ, Wackerhage H, Spangenburg EE et al (2004) Control of the size of the human muscle mass. Annu Rev Physiol 66:799–828

    Article  CAS  PubMed  Google Scholar 

  • Riddle ES, Stipanuk MH, Thalacker-Mercer AE (2016) Amino acids in healthy aging. Front Biosci 1:326–350

    Google Scholar 

  • Rieu I, Balage M, Sornet C et al (2006) Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J Physiol 575:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MJ, Burd NA, Breen L et al (2013) Dose-dependent responses of myofibrillar protein synthesis with beef ingestion are enhanced with resistance exercise in middle-aged men. Appl Physiol Nutr Metab 38:120–125

    Article  CAS  PubMed  Google Scholar 

  • Rondanelli M, Klersy C et al (2016) Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr 103(3):830–840

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S–991S

    CAS  PubMed  Google Scholar 

  • Ruiz J, Sui X, Lobelo F et al (2008) Association between muscular strength and mortality in men: prospective cohort study. BMJ 337:a439

    Article  PubMed  Google Scholar 

  • Russell WR et al (2011) High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 93:1062–1072

    Article  CAS  PubMed  Google Scholar 

  • Saxton RA, Knockenhauer KE, Wolfson RL et al (2016) Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351(6268):53–58

    Article  CAS  PubMed  Google Scholar 

  • Scott D, Hayes A, Sanders K et al (2014) Operational definitions of sarcopenia and their associations with 5-year changes in falls risk in community-dwelling middle-aged and older adults. Osteoporosis Int 25(1):187–193

    Article  CAS  Google Scholar 

  • Smith K, Reynolds N, Downie S et al (1998) Effects of flooding amino acids on incorporation of labeled amino acids into human muscle protein. Am J Physiol 275(1 Pt 1):E73–E78

    CAS  PubMed  Google Scholar 

  • Tang JE, Phillips SM (2009) Maximizing muscle protein anabolism: the role of protein quality. Curr Opin Clin Nutr Metab Care 12:66–71

    Article  CAS  PubMed  Google Scholar 

  • Terzis G, Georgiadis G, Stratakos G et al (2008) Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102:145–152

    Article  CAS  PubMed  Google Scholar 

  • Ticinesi A, Meschi T, Lauretani F et al (2016) Nutrition and inflammation in older individuals: focus on vitamin D, n-3 polyunsaturated fatty acids and whey proteins. Nutrients 8(4):186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tieland M, Dirks M, van der Zwaluw N et al (2012a) Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 13(8):713–719

    Article  PubMed  Google Scholar 

  • Tieland M, van de Rest O, Dirks M et al (2012b) Protein supplementation improves physical performance in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 13:720–726

    Article  PubMed  Google Scholar 

  • Timmerman KL, Dhanani S, Glynn EL et al (2012) A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am J Clin Nutr 95:1403–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tipton KD, Gurki BE, Matin S et al (1999) Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. J Nutr Biochem 10:89–95

    Article  CAS  PubMed  Google Scholar 

  • Velazquez AMC, Irigoyen CM, Delgadillo VJ et al (2013) The relationship between sarcopenia, undernutrition, physical mobility and basic activities of daily living in a group of elderly women of Mexico City. Nutr Hosp 28(2):514–521

    Google Scholar 

  • Volek JS et al (2013) Whey protein supplementation during resistance training augments lean body mass. J Am Coll Nutr 32(2):122–135

    Article  CAS  PubMed  Google Scholar 

  • Volpi E, Mittendorfer B, Wolf SE et al (1999) Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction. Am J Physiol 277(3:1):513–520

  • Volpi E, Kobayashi H, Sheffield-Moore M et al (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78:250–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volpi E, Campbell WW, Dwyer JT et al (2013) Is the optimal level of protein intake for older adults greater than the recommended dietary allowance? J Gerontol A Biol Sci Med Sci 68:677–681

    Article  CAS  PubMed  Google Scholar 

  • Walker DK, Dickinson JM, Timmerman KL et al (2011) Exercise, amino acids, and aging in the control of human muscle protein synthesis. Med Sci Sports Exerc 43:2249–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall B, van Loon L (2013) Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev 71(4):195–208

    Article  PubMed  Google Scholar 

  • Wall BT, Gorissen SH, Pennings B et al (2015) Aging is accompanied by a blunted muscle protein synthetic response to protein ingestion. PLoS One 10(11):e0140903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walrand S, Gryson C, Salles J et al (2016) Fast-digestive protein supplement for ten days overcomes muscle anabolic resistance in healthy elderly men. Clin Nutr 35:660–668

    Article  CAS  PubMed  Google Scholar 

  • Welle S, Thornton C, Jozefowicz R et al (1993) Myofibrillar protein synthesis in young and old men. Am J Physiol 264:E693–E698

    CAS  PubMed  Google Scholar 

  • West D, Burd N, Coffey V et al (2011) Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am J Clin Nutr 94(3):795–803

    Article  CAS  PubMed  Google Scholar 

  • Wilkes EA, Selby AL, Atherton PJ et al (2009) Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related sarcopenia. Am J Clin Nutr 90:1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SB, Tarnopolsky MA, Macdonald MJ et al (2007) Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr 85:1031–1040

    CAS  PubMed  Google Scholar 

  • Witard OC, Turner JE, Jackman SR et al (2014) High dietary protein restores overreaching induced impairments in leukocyte trafficking and reduces the incidence of upper respiratory tract infection in elite cyclists. Brain Behav Immun 39:211–319

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RR (2006) The underappreciated role of muscle in health and disease. Am J Clin Nutr 84:475–478

    CAS  PubMed  Google Scholar 

  • Wolfe RR (2012) The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br J Nutr 108(2):S88–S93

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RR, Miller SL (2008) The recommended dietary allowance of protein: a misunderstood concept. JAMA 299:2891–2893

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RR, Miller S, Miller K (2008) Optimal protein intake in the elderly. Clin Nutr 27(5):675–684

    Article  CAS  PubMed  Google Scholar 

  • Wolfson RL, Chantranupong L, Saxton RA et al (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway. Amino Acids 351(6268):43–48

    CAS  Google Scholar 

  • Wu G (2016) Dietary protein intake and human health. Food Funct 7:1251–1265

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Breen L, Burd N et al (2012a) Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr 108(10):1780–1788

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Churchward-Venne TA, Burd NA et al (2012b) Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men. Nutr Metab (Lond) 9(1):57

    Article  CAS  PubMed Central  Google Scholar 

  • Yarasheski KE, Zachwieja JJ, Bier DM (1993) Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am J Physiol 265:E210–E214

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Sao Paulo, AgroParisTech, INRA and Université Paris-Saclay for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Herbert Lancha Jr. or Francois Blachier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

The manuscript has not been submitted to other journal for simultaneous consideration. The manuscript, partly or in full, has not been published previously. No data have been fabricated or manipulated (including images) to support our conclusions. No data, text, or theories by others are presented as if they were the author’s own (plagiarism).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lancha Jr., A.H., Zanella Jr., R., Tanabe, S.G.O. et al. Dietary protein supplementation in the elderly for limiting muscle mass loss. Amino Acids 49, 33–47 (2017). https://doi.org/10.1007/s00726-016-2355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2355-4

Keywords

Navigation