Skip to main content
Log in

Systemic availability of guanidinoacetate affects GABAA receptor function and seizure threshold in GAMT deficient mice

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Deficiency of guanidinoacetate methyltransferase (GAMT) causes creatine depletion and guanidinoacetate accumulation in brain with the latter deemed to be responsible for the severe seizure disorder seen in affected patients. We studied electrical brain activity and GABAA mediated mechanisms of B6J.Cg-Gamttm1Isb mice. Electrocorticographic (ECoG) monitoring of pharmacological treatments with ornithine (5 % in drinking water for 5–18 days) and/or Picrotoxin (PTX) (a GABAA receptor antagonist) (1.5 mg/kg, I.P.) in GamtMUT and GamtWT groups [n = 3, mean age (SEM) = 6.9 (0.2) weeks]. Mice were fitted with two frontal and two parietal epidural electrodes under ketamine/xylazine anesthesia. Baseline and test recordings were performed for determination of seizure activity over a 2 h period. The ECoG baseline of GamtMUT exhibited an abnormal monotonous cortical rhythm (7–8 Hz) with little variability during awake and sleep states compared to wild type recordings. Ornithine treatment and also PTX administration led to a relative normalization of the GamtMUT ECoG phenotype. GamtWT on PTX exhibited electro-behavioral seizures, whereas the GamtMUT did not have PTX induced seizures at the same PTX dose. GamtMUT treated with both ornithine and PTX did not show electro-behavioral seizures while ornithine elevated the PTX seizure threshold of GamtMUT mice even further. These data demonstrate: (1) that there is expression of electrical seizure activity in this Gamt-deficient transgenic mouse strain, and (2) that the systemic availability of guanidinoacetate affects GABAA receptor function and seizure thresholds. These findings are directly and clinically relevant for patients with a creatine-deficiency syndrome due to genetic defects in GAMT and provide a rational basis for a combined ornithine/picrotoxin therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGAT:

Arginineglycine amidinotransferase

ECoG:

Electrocorticogram

GAA:

Guanidinoacetic acid

GABA:

Gama-amino butyric acid

GAMT:

Guanidinoacetate methyltransferase

GamtMUT :

B6J.Cg-Gamttm1Isb mutant mice

GamtWT :

B6J.Cg-Gamttm1Isb wild type mice

MUT:

Mutant

ORN:

Ornithine

PTX:

Picrotoxin

SAH:

S-adenosyl-l-homocysteine

SAM:

S-adenosyl-l-methionine

WT:

Wild type

References

  • Cortez MA, McKerlie C, Snead OC III (2001) A model of atypical absence seizures: EEG, pharmacology, and developmental characterization. Neurology 56(3):341–349

    Article  CAS  PubMed  Google Scholar 

  • De Deyn PP, D’Hooge R, Van Bogaert PP, Marescau B (2001) Endogenous guanidino compounds as uremic neurotoxins. Kidney Int 59(Suppl 78):S77–S83

    Article  Google Scholar 

  • del Campo CM, Velázquez JL, Freire MA (2009) EEG recording in rodents, with a focus on epilepsy. Curr Protoc Neurosci. doi:10.1002/0471142301.ns0624s49

    PubMed  Google Scholar 

  • D’Hooge R, Pei YQ, Marescau B, De Deyn PP (1992) Convulsive action and toxicity of uremic guanidino compounds: behavioral assessment and relation to brain concentration in adult mice. J Neurol Sci 112(1–2):96–105

    Article  PubMed  Google Scholar 

  • Hanna-El-Daher L, Beard E, Henry H, Tenenbaum L, Braissant O (2015) Mild guanidinoacetate increase under partial guanidinoacetate methyltransferase deficiency strongly affects brain cell development. Neurobiol Dis 79:14–27

    Article  CAS  PubMed  Google Scholar 

  • Kan HE, Buse-Pot TE, Peco R, Isbrandt D, Heerschap A, de HA (2005) Lower force and impaired performance during high-intensity electrical stimulation in skeletal muscle of GAMT-deficient knockout mice. Am J Physiol Cell Physiol 289(1):C113–C119

    Article  CAS  PubMed  Google Scholar 

  • Mori A (1987) Biochemistry and neurotoxicology of guanidino compounds. History and recent advances. Pavlov J Biol Sci 22(3):85–94

    CAS  PubMed  Google Scholar 

  • Neu A, Neuhoff H, Trube G, Fehr S, Ullrich K, Roeper J, Isbrandt D (2002) Activation of GABA(A) receptors by guanidinoacetate: a novel pathophysiological mechanism. Neurobiol Dis 11(2):298–307

    Article  CAS  PubMed  Google Scholar 

  • Renema WK, Schmidt A, van Asten JJ, Oerlemans F, Ullrich K, Wieringa B, Isbrandt D, Heerschap A (2003) MR spectroscopy of muscle and brain in guanidinoacetate methyltransferase (GAMT)-deficient mice: validation of an animal model to study creatine deficiency. Magn Reson Med 50(5):936–943

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Marescau B, Boehm EA, Renema WK, Peco R, Das A, Steinfeld R, Chan S, Wallis J, Davidoff M, Ullrich K, Waldschutz R, Heerschap A, De Deyn PP, Neubauer S, Isbrandt D (2004) Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum Mol Genet 13(9):905–921

    Article  CAS  PubMed  Google Scholar 

  • Schneider JE, Tyler DJ, Ten HM, Sang AE, Cassidy PJ, Fischer A, Wallis J, Sebag-Montefiore LM, Watkins H, Isbrandt D, Clarke K, Neubauer S (2004) In vivo cardiac 1H-MRS in the mouse. Magn Reson Med 52(5):1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244(1–2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Schulze A (2012) Gyrate atrophy of the choroid and retina with hyperornithinemia. MedLink Neurology. http://www.medlink.com. Accessed 15 Nov 2015

  • Schulze A (2013) Creatine deficiency syndromes. Handb Clin Neurol 113:1837–1843

    Article  PubMed  Google Scholar 

  • Schulze A, Ebinger F, Rating D, Mayatepek E (2001) Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation. Mol Genet Metab 74(4):413–419

    Article  CAS  PubMed  Google Scholar 

  • Schulze A, Anninos A, Hoffmann GF, Schwahn B, Mayatepek E, Waltz S, Rheingans K (2005) AGAT enzyme inhibition by high-dose ornithine: a new approach in treatment of GAMT deficiency. J Inherit Metab Dis 28(Suppl. 1):227

    Google Scholar 

  • Sipila I (1980) Inhibition of arginine-glycine amidinotransferase by ornithine. A possible mechanism for the muscular and chorioretinal atrophies in gyrate atrophy of the choroid and retina with hyperornithinemia. Biochim Biophys Acta 613(1):79–84

    Article  CAS  PubMed  Google Scholar 

  • Stöckler S, Isbrandt D, Hanefeld F, Schmidt B, von Figura K (1996) Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet 58:914–922

    PubMed  PubMed Central  Google Scholar 

  • Stockler-Ipsiroglu S, vanKarnebeek C, Longo N, Korenke GC, Mercimek-Mahmutoglu S, Marquart I, Barshop B, Grolik C, Schlune A, Angle B, Araujo HC, Coskun T, Diogo L, Geraghty M, Haliloglu G, Konstantopoulou V, Leuzzi V, Levtova A, MacKenzie J, Maranda B, Mhanni AA, Mitchell G, Morris A, Newlove T, Renaud D, Scaglia F, Valayannopoulos V, van Spronsen FJ, Verbruggen KT, Yuskiv N, Nyhan W, Schulze A (2014) Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab 111(1):16–25

    Article  CAS  PubMed  Google Scholar 

  • ten Hove M, Lygate CA, Fischer A, Schneider JE, Sang AE, Hulbert K, Sebag-Montefiore L, Watkins H, Clarke K, Isbrandt D, Wallis J, Neubauer S (2005) Reduced inotropic reserve and increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetate-N-methyltransferase-knockout mice. Circulation 111(19):2477–2485

    Article  PubMed  Google Scholar 

  • Torremans A, Marescau B, Possemiers I, Van DD, D’Hooge R, Isbrandt D, De Deyn PP (2005) Biochemical and behavioural phenotyping of a mouse model for GAMT deficiency. J Neurol Sci 231(1–2):49–55

    Article  CAS  PubMed  Google Scholar 

  • Tran C, Yazdanpanah M, Kyriakopoulou L, Levandovskiy V, Zahid H, Naufer A, Isbrandt D, Schulze A (2014) Stable isotope dilution microquantification of creatine metabolites in plasma, whole blood and dried blood spots for pharmacological studies in mouse models of creatine deficiency. Clin Chim Acta 436C:160–168

    Article  Google Scholar 

  • Verbruggen KT, Sijens PE, Schulze A, Lunsing RJ, Jakobs C, Salomons GS, van Spronsen FJ (2007) Successful treatment of a guanidinoacetate methyltransferase deficient patient: findings with relevance to treatment strategy and pathophysiology. Mol Genet Metab 91(3):294–296

    Article  CAS  PubMed  Google Scholar 

  • Zugno AI, Scherer EB, Schuck PF, Oliveira DL, Wofchuk S, Wannmacher CM, Wajner M, Wyse AT (2006) Intrastriatal administration of guanidinoacetate inhibits Na+, K+-ATPase and creatine kinase activities in rat striatum. Metab Brain Dis 21(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Zugno AI, Oliveira DL, Scherer EB, Wajner M, Wofchuk S, Wyse AT (2007) Guanidinoacetate inhibits glutamate uptake in rat striatum of rats at different ages. Neurochem Res 32(6):959–964

    Article  CAS  PubMed  Google Scholar 

  • Zugno AI, Stefanello FM, Scherer EB, Mattos C, Pederzolli CD, Andrade VM, Wannmacher CM, Wajner M, Dutra-Filho CS, Wyse AT (2008) Guanidinoacetate decreases antioxidant defenses and total protein sulfhydryl content in striatum of rats. Neurochem Res 33(9):1804–1810

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The B6J.Cg-Gamttm1Isb transgenic mouse strain was generated and kindly provided by Dr. D. Isbrandt, University Medical Center Hamburg/Eppendorf, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schulze.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of and approved by the institution’s animal care committee.

Additional information

Handling Editor: T. Wallimann and R. Harris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, A., Tran, C., Levandovskiy, V. et al. Systemic availability of guanidinoacetate affects GABAA receptor function and seizure threshold in GAMT deficient mice. Amino Acids 48, 2041–2047 (2016). https://doi.org/10.1007/s00726-016-2197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2197-0

Keywords

Navigation