Skip to main content
Log in

Understanding the distinguishable structural and functional features in zebrafish TLR3 and TLR22, and their binding modes with fish dsRNA viruses: an exploratory structural model analysis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Viral infections are one of the major challenges in aquaculture production, and considered as the potential threat for fish farming. Toll-like receptor (TLR) 3 and TLR22 are highly specialized innate immune receptors that recognize double-stranded (ds)-RNA of viruses resulting in the induction of innate immunity. The existence of TLR3 and TLR22 only in aquatic animals indicates their distinctive characteristics in viral infection; however, the studies in exploring their structural features and dsRNA binding mechanism are still elusive. Here, we studied the structural and functional differentiations of TLR3 and TLR22 in zebrafish by employing comparative modeling and molecular dynamics simulation. Comparative structural analysis revealed a distinct spatial arrangement of TLR22 ectodomain with a flattened horseshoe-shape conformation as compared to other TLRs. Essential dynamics studies showed that unlike TLR3, TLR22 possessed a prominent motion, elasticity and twisting at both terminus separated by a distance equivalent to the length of a short-sized dsRNA. Interaction analysis of polyinosinic:polycytidylic acid (poly I:C) and dsRNA depicted leucine-rich-repeats (LRR)2–3 and LRR18–19 (in TLR3) and LRRNT-LRR3 and LRR22–24 (in TLR22) as the potential binding sites. The short-sized dsRNA binds tightly across its full-length with TLR22-monomer, and suggested that TLR22 dimer may sense long-sized dsRNA. Binding energy (BE) calculation using MM/PBSA method from the TLR3- and TLR22-ligand complexes revealed an adequate binding affinity between TLR22-monomer and dsRNA as like as TLR3-dimer-dsRNA complex. Mutagenesis and BE computation of key residues suggested their involvement in dsRNA recognition. These findings can be helpful for therapeutic applications against viral diseases in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17:412–425

    Article  CAS  PubMed  Google Scholar 

  • Amini K, Chanb NWC, Kraatz HB (2014) Toll-like receptor 3 modified Au electrodes: an investigation into the interaction of TLR3 immobilized on Au surfaces with poly (I:C). Anal Methods 6:3322–3328

    Article  CAS  Google Scholar 

  • Bakan A, Meireles LM, Bahar I (2011) ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27:1575–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell JK, Botos I, Hall PR, Askins J, Shiloach J, Segal DM, Davies DR (2005) The molecular structure of the toll-like receptor 3 ligand-binding domain. Proc Natl Acad Sci USA 102:10976–10980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell JK, Askins J, Hall PR, Davies DR, Segal DM (2006) The dsRNA binding site of human toll-like receptor 3. Proc Natl Acad Sci USA 103:8792–8797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharya D, Cheng J (2013) i3Drefine software for protein 3D structure refinement and its assessment in CASP10. PLoS One 8:e69648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Botos I, Segal DM, Davies DR (2011) The structural biology of toll-like receptors. Structure 19:447–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown SP, Muchmore SW (2006) High-throughput calculation of protein-ligand binding affinities: modification and adaptation of the MM-PBSA protocol to enterprise grid computing. J Chem Inf Model 46:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41:349–357

    Article  Google Scholar 

  • Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, Li Q, Su J, Yang C, Li Y, Rao Y (2013) Trunk kidney of grass carp (Ctenopharyngodon idella) mediates immune responses against GCRV and viral/bacterial PAMPs in vivo and in vitro. Fish Shellfish Immunol 34:909–919

    Article  CAS  PubMed  Google Scholar 

  • Choe J, Kelker MS, Wilson IA (2005) Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309:581–585

    Article  CAS  PubMed  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20:45–50

    Article  CAS  PubMed  Google Scholar 

  • Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  CAS  PubMed  Google Scholar 

  • Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196

    Article  CAS  PubMed  Google Scholar 

  • Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 50:2.9.1–2.9.31

    Google Scholar 

  • Eyal E, Yang LW, Bahar I (2006) Anisotropic network model: systematic evaluation and a new web interface. Bioinformatics 22:2619–2627

    Article  CAS  PubMed  Google Scholar 

  • Ferre F, Clote P (2005) DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 33:230–232

    Article  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:211–222

    Article  Google Scholar 

  • Fiser A, Sali A (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19:2500–2501

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for indepth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 7:310–322

    Google Scholar 

  • Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Proteins 33:417–429

    Article  CAS  PubMed  Google Scholar 

  • Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol 6:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Joosten RP, te Beek TA, Krieger E, Hekkelman ML, Hooft RW, Schneider R, Sander C, Vriend G (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res 39:411–419

    Article  Google Scholar 

  • Kang JY, Lee JO (2011) Structural biology of the toll-like receptor family. Annu Rev Biochem 80:917–941

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Abeysirigunawarden SC, Chen K, Mayerle M, Ragunathan K, Luthey-Schulten Z, Ha T, Woodson SA (2014) Protein-guided RNA dynamics during early ribosome assembly. Nature 506:334–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2:256–267

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Zhang J, Yu FS (2006) Toll-like receptor 3 aganist poly (I:C)-induced antiviral response in human corneal epithelial cells. Immunology 117:11–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  CAS  PubMed  Google Scholar 

  • Leonard JN, Ghirlando R, Askins J, Bell JK, Margulies DH, Davies DR, Segal DM (2008) The TLR3 signaling complex forms by cooperative receptor dimerization. Proc Natl Acad Sci USA 105:258–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:302–305

    Article  Google Scholar 

  • Li YG, Siripanyaphinyo U, Tumkosit U, Noranate N, A-Nuegoonpipat A, Pan Y, Kameoka M, Kurosu T, Ikuta K, Takeda N, Anantapreecha S (2012) Poly (I:C), an agonist of toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells. Virol J 9:114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Davies DR (2008) Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320:379–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo R, David L, Gilson MK (2002) Accelerated Poisson–Boltzmann calculations for static and dynamic systems. J Comput Chem 23:1244–1253

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Obmolova G, Malia TJ, Wu SJ, Duffy KE, Marion JD, Bell JK, Ge P, Zhou ZH, Teplyakov A, Zhao Y, Lamb RJ, Jordan JL, San Mateo LR, Sweet RW, Gilliland GL (2012) Lateral clustering of TLR3:dsRNA signaling units revealed by TLR3ecd:3Fabs quaternary structure. J Mol Biol 421:112–124

  • Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  PubMed  Google Scholar 

  • Maharana J, Swain B, Sahoo BR, Dikhit MR, Basu M, Mahapatra AS, Jayasankar P, Samanta M (2013) Identification of MDP (muramyl dipeptide)-binding key domains in NOD2 (nucleotide-binding and oligomerization domain-2) receptor of Labeo rohita. Fish Physiol Biochem 39:1007–1023

    Article  CAS  PubMed  Google Scholar 

  • Maharana J, Patra MC, De BC, Sahoo BR, Behera BK, De S, Pradhan SK (2014) Structural insights into the MDP binding and CARD–CARD interaction in zebrafish (Danio rerio) NOD2: a molecular dynamics approach. J Mol Recognit 27:260–275

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:225–229

    Article  Google Scholar 

  • Matsuo A, Oshiumi H, Tsujita T, Mitani H, Kasai H, Yoshimizu M, Matsumoto M, Seya T (2008) TLR22 recognizes RNA duplex to induce IFN and protect cells from Birnaviruses. J Immunol 181:3474–3485

    Article  CAS  PubMed  Google Scholar 

  • Maynard CM, Hall KB (2010) Interactions between PTB RRMs induce slow motions and increase RNA binding affinity. J Mol Biol 397:260–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medzhitov R, Janeway C Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97

    Article  CAS  PubMed  Google Scholar 

  • Meeker ND, Trede NS (2008) Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 32:745–757

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naumann K, Wehner R, Schwarze A, Petzold C, Schmitz M, Rohayem J (2013) Activation of dendritic cells by the novel toll-like receptor 3 agonist RGC100. Clin Dev Immunol 2013:283649

    Article  PubMed Central  PubMed  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  • Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30:1771–1773

    Article  CAS  PubMed  Google Scholar 

  • Pietretti D, Wiegertjes GF (2014) Ligand specificities of toll-like receptors in fish: indications from infection studies. Dev Comp Immunol 4:205–222

    Article  Google Scholar 

  • Pirher N, Ivicak K, Pohar J, Bencina M, Jerala R (2008a) A second binding site for double-stranded RNA in TLR3 and consequences for interferon activation. Nat Struct Mol Biol 15:761–763

    Article  CAS  PubMed  Google Scholar 

  • Pirher N, Ivicak K, Pohar J, Bencina M, Jerala R (2008b) A second binding site for double-stranded RNA in TLR3 and consequences for interferon activation. Nat Struct Mol Biol 15:761–763

    Article  CAS  PubMed  Google Scholar 

  • Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open sourcemolecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sahoo BR, Basu M, Swain B, Maharana J, Dikhit MR, Jayasankar P, Samanta M (2012) Structural insights of rohu TLR3, its binding site analysis with fish reovirus dsRNA, poly I:C and zebrafish TRIF. Int J Biol Macromol 51:531–543

    Article  CAS  PubMed  Google Scholar 

  • Sahoo BR, Basu M, Swain B, Dikhit MR, Jayasankar P, Samanta M (2013a) Elucidation of novel structural scaffold in rohu TLR2 and its binding site analysis with peptidoglycan, lipoteichoic acid and zymosan ligands, and downstream MyD88 adaptor protein. Biomed Res Int 2013:185282

    Article  PubMed Central  PubMed  Google Scholar 

  • Sahoo BR, Swain B, Dikhit MR, Basu M, Bej A, Jayasankar P, Samanta M (2013b) Activation of nucleotide-binding oligomerization domain 1 (NOD1) receptor signaling in Labeo rohita by iE-DAP and identification of ligand-binding key motifs in NOD1 by molecular modeling and docking. Appl Biochem Biotechnol 170:1282–1309

    Article  CAS  PubMed  Google Scholar 

  • Sahoo BR, Maharana J, Bhoi GK, Lenka SK, Patra MC, Dikhit MR, Dubey PK, Pradhan SK, Behera BK (2014) A conformational analysis of mouse Nalp3 domain structures by molecular dynamics simulations, and binding site analysis. Mol BioSyst 10:1104–1116

    Article  CAS  PubMed  Google Scholar 

  • Samanta M, Basu M, Swain B, Panda P, Jayasankar P (2013) Molecular cloning and characterization of toll-like receptor 3, and inductive expression analysis of type I IFN, Mx and pro-inflammatory cytokines in the Indian carp, rohu (Labeo rohita). Mol Biol Rep 40:225–235

    Article  CAS  PubMed  Google Scholar 

  • Samanta M, Swain B, Basu M, Mahapatra G, Sahoo BR, Paichha M, Lenka SS, Jayasankar P (2014) Toll-like receptor 22 in Labeo rohita: molecular cloning, characterization, 3D modeling, and expression analysis following ligands stimulation and bacterial infection. Appl Biochem Biotechnol 174:309–327

    Article  CAS  PubMed  Google Scholar 

  • Spiliotopoulos D, Spitaleri A, Musco G (2012) Exploring PHD fingers and H3K4me0 interactions with molecular dynamics simulations and binding free energy calculations: AIRE-PHD1, a comparative study. PLoS One 7:e46902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su J, Heng J, Huang T, Peng L, Yang C, Li Q (2012) Identification, mRNA expression and genomic structure of TLR22 and its association with GCRV susceptibility/resistance in grass carp (Ctenopharyngodon idella). Dev Comp Immunol 36:450–462

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  CAS  PubMed  Google Scholar 

  • Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56

    Article  CAS  PubMed  Google Scholar 

  • Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Liu L, Davies DR, Segal DM (2010) Dimerization of toll-like receptor 3 (TLR3) is required for ligand binding. J Biol Chem 285:36836–36841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web, interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410

    Article  Google Scholar 

  • Yu L, Wang L, Chen S (2010) Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med 14:2592–2603

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Kormos BL, Beveridge DL, Baranger AM (2006) Molecular dynamics simulation studies of a protein-RNA complex with a selectively modified binding interface. Biopolymers 81:256–269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sukanta Kumar Pradhan (HOD), Department of Bioinformatics, Orissa University of Agriculture and Technology, Bhubaneswar for their suggestive and helpful discussion during the manuscript preparation and revision

Conflict of interest

There are no conflicts of interest.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Ranjan Sahoo.

Additional information

We dedicate this work to our beloved co-author Mr. Gopal Krushna Bhoi (12/05/1984 to 20/11/2014). A special feeling of gratitude to my best and loving friend Mr. Gopal whose words of encouragement and push for tenacity ring in my ears.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 20017 kb). Fig. S1 Target-template alignment generated using Modeller v9.12. The alignment was manually refined to minimize gaps in reference to PSI-BLAST results. The significant gaps generated with single template is shown inside rectangles. “*” mark represents target residue conservation in either of the template sequence

726_2014_1872_MOESM2_ESM.eps

Supplementary material 2 (EPS 1813 kb). Fig. S2 Secondary structural changes in zebrafish TLR3-ECD and TLR22-ECD models during 50 ns MD simulation a zTLR3-ECD, and b zTLR22-ECD. The colors representing different secondary structural units are presented in the legends, and is given at the bottom of the figure

726_2014_1872_MOESM3_ESM.eps

Supplementary material 3 (EPS 2366 kb). Fig. S3 Elasticity analysis of zebrafish TLR3-ECD and TLR22-ECD models using ProDy a Anisotropic network model of zTLR3-ECD model during 50 ns MD simulation, and b Anisotropic network model of zTLR22-ECD model during 50 ns MD simulation. The arrows represent the extent of elastic movements and direction

726_2014_1872_MOESM4_ESM.eps

Supplementary material 4 (EPS 2775 kb). Fig. S4 Ramachandran plot analysis of homology models using PROCHECK program a zTLR3-ECD model, and b zTLR22-ECD model

726_2014_1872_MOESM5_ESM.eps

Supplementary material 5 (EPS 5784 kb). Fig. S5 Molecular interaction of poly I:C and zebrafish TLR3-ECD and zTLR22-ECD models in ArgusLab 4.0.1 a Docking at N-terminus of zTLR3-ECD model, b at C-terminus of zTLR3-ECD model, c at N-terminus of zTLR22-ECD model, and d at N-terminus of zTLR22-ECD model. The ligand binding sites are generated using PyMOL. The protein is shown as cartoon and ligand as stick. TLR-NT and CT represents N-terminal and C-terminal, respectively

726_2014_1872_MOESM6_ESM.eps

Supplementary material 6 (EPS 3797 kb). Fig. S6 Stability and interaction analysis in complexes during MD simulation a Radius of gyration in different receptor (zTLR3-ECD and zTLR22-ECD) and poly I:C complexes, and b Hydrogen bond fluctuations between receptor and poly I:C

726_2014_1872_MOESM7_ESM.eps

Supplementary material 7 (EPS 1603 kb). Fig. S7 Root mean square fluctuation of amino acid residues in zebrafish TLR22-ECD and dsRNA complexes during 10 ns MD simulation

726_2014_1872_MOESM8_ESM.eps

Supplementary material 8 (EPS 904 kb). ESM_1 The animation of structural rearrangements of zTLR22-ECD terminal regions during MD simulation was generated using VMD and show as cartoon

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B.R., Dikhit, M.R., Bhoi, G.K. et al. Understanding the distinguishable structural and functional features in zebrafish TLR3 and TLR22, and their binding modes with fish dsRNA viruses: an exploratory structural model analysis. Amino Acids 47, 381–400 (2015). https://doi.org/10.1007/s00726-014-1872-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1872-2

Keywords

Navigation