Skip to main content

Advertisement

Log in

The regulatory peptide pidotimod facilitates M2 macrophage polarization and its function

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Pidotimod is a synthetic dipeptide with biological and immunological activity in innate immune responses. It has been reported that pidotimod could promote functional maturation of dendritic cells, but little is known about the regulation of macrophages. Recent studies have demonstrated that M1 or M2 polarized macrophages are of great importance for responses to microorganism infection or host mediators. The aim of this study was to determine the effectiveness of pidotimod on mouse bone marrow-derived macrophage polarization and its function. The results showed that pidotimod had no influence on M1-polarized macrophage. While interestingly, a significant increase of M2 marker gene expression (Arg1, Fizz1, Ym1, MR) was observed (p < 0.01) in IL-4-induced M2 macrophage treated with pidotimod. In addition, cell surface expression of mannose receptor was dramatically enhanced using fluorescence activated cell sorter (FACS) analysis. Furthermore, the function of M2 macrophage was also determinated. The results showed that the supernatant of pidotimod-treated M2 macrophage could increase the migration (p < 0.05) and enhance the wound closure rate (p < 0.05) of MLE-12 cells. Collectively, it could be concluded that pidotimod significantly facilitated IL-4-induced M2 macrophage polarization and improves its function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Auteri A, Pasqui AL, Bruni F et al (1992) Effect of pidotimod, a new immunostimulating agent, on some aspects of immune response. In vitro study. Pharmacol Res 26(Suppl 2):196–197

    Article  PubMed  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  PubMed  CAS  Google Scholar 

  • Careddu P, Mei V, Venturoli V, Corsini A (1994) Pidotimod in the treatment of recurrent respiratory infections in paediatric patients. Arzneimittelforschung 44:1485–1489

    PubMed  CAS  Google Scholar 

  • Coppi G, Barchielli M (1991) Simple high-performance liquid chromatographic method for the determination of PGT/1A, a new immunostimulating drug, in biological fluids. J Chromatogr 563:385–391

    Article  PubMed  CAS  Google Scholar 

  • Coppi G, Manzardo S (1994) Experimental immunological screening tests on pidotimod. Arzneimittelforschung 44:1411–1416

    PubMed  CAS  Google Scholar 

  • di Marco R, Condorelli F, Girardello R et al (1992) Increased rate of survival in Streptococcus pneumoniae-infected rats treated with the new immunomodulator pidotimod. Scand J Infect Dis 24:821–823

    Article  PubMed  Google Scholar 

  • Edwards JP, Zhang X, Frauwirth KA et al (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298–1307

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Giagulli C, Noerder M, Avolio M et al (2009) Pidotimod promotes functional maturation of dendritic cells and displays adjuvant properties at the nasal mucosa level. Int Immunopharmacol 9:1366–1373

    Article  PubMed  CAS  Google Scholar 

  • Goerdt S, Orfanos CE (1999) Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10:137–142

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  • Heilbronn LK, Campbell LV (2008) Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des 14:1225–1230

    Article  PubMed  CAS  Google Scholar 

  • Hesse M, Modolell M, La Flamme AC et al (2001) Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of l-arginine metabolism. J Immunol 167:6533–6544

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Zhang W, Wang L et al (2012) The detailed analysis of the changes of murine dendritic cells (DCs) induced by thymic peptide: pidotimod (PTD). Hum Vaccin Immunother 8:1250–1258

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ji J, Hu SL, Cui ZW et al (2013) Probiotic Bacillus amyloliquefaciens mediate M1 macrophage polarization in mouse bone marrow-derived macrophages. Arch Microbiol 195:349–356

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Grieb B, Thyagarajan A et al (2008) Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-kappaB signaling. Int J Mol Med 21:577–584

    PubMed  CAS  Google Scholar 

  • Kang K, Reilly SM, Karabacak V et al (2008) Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab 7:485–495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kreider T, Anthony RM, Urban JJ et al (2007) Alternatively activated macrophages in helminth infections. Curr Opin Immunol 19:448–453

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344–346

    Article  PubMed  CAS  Google Scholar 

  • Manzardo S, Falcone A, Pinzetta A et al (1994) General pharmacology of pidotimod and testing for drug interactions. Arzneimittelforschung 44:1441–1447

    PubMed  CAS  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  PubMed  CAS  Google Scholar 

  • Mege JL, Mehraj V, Capo C (2011) Macrophage polarization and bacterial infections. Curr Opin Infect Dis 24:230–234

    Article  PubMed  Google Scholar 

  • Migliorati G, D’Adamio L, Coppi G et al (1992) Pidotimod stimulates natural killer cell activity and inhibits thymocyte cell death. Immunopharmacol Immunotoxicol 14:737–748

    Article  PubMed  CAS  Google Scholar 

  • Migliorati G, Nicoletti I, Riccardi C (1994) Immunomodulating activity of pidotimod. Arzneimittelforschung 44:1421–1424

    PubMed  CAS  Google Scholar 

  • Mikita T, Campbell D, Wu P et al (1996) Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol Cell Biol 16:5811–5820

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mookherjee N, Brown KL, Bowdish DM et al (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176:2455–2464

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nair MG, Gallagher IJ, Taylor MD et al (2005) Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun 73:385–394

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raes G, De Baetselier P, Noel W et al (2002) Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol 71:597–602

    PubMed  CAS  Google Scholar 

  • Riboldi P, Gerosa M, Meroni PL (2009) Pidotimod: a reappraisal. Int J Immunopathol Pharmacol 22:255–262

    PubMed  CAS  Google Scholar 

  • Rolls A, Shechter R, London A et al (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5:e171

    Article  PubMed Central  PubMed  Google Scholar 

  • Saccani A, Schioppa T, Porta C et al (2006) p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66:11432–11440

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Takeuchi O, Vandenbon A et al (2010) The Jmjd3–Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11:936–944

    Article  PubMed  CAS  Google Scholar 

  • Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439

    Article  PubMed  CAS  Google Scholar 

  • Stein M, Keshav S, Harris N et al (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–292

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the planning subject of ‘the twelfth five-year-plan’ in national science and technology for the rural development in China (No.2013BAD10B03).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Ji or Weifen Li.

Additional information

S. Hu and X. Fu have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, S., Fu, X., Fu, A. et al. The regulatory peptide pidotimod facilitates M2 macrophage polarization and its function. Amino Acids 46, 1177–1185 (2014). https://doi.org/10.1007/s00726-014-1676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1676-4

Keywords

Navigation