Skip to main content

Advertisement

Log in

Proteomics analysis of human umbilical vein endothelial cells treated with resveratrol

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In the past decade, the small polyphenol resveratrol has received widespread attention as either a potential therapy or as a preventive agent for numerous age-related chronic diseases, including cardiovascular atherosclerosis, cancer, hypertension, and diabetes, but the biological processes and molecular pathways by which resveratrol induces these beneficial effects, as well as its safety and toxicology remain largely undefined. To explore the molecular mechanisms of resveratrol involved in the amelioration of endothelial dysfunction and vascular disease, in the present study the protein profile changes of human umbilical vein endothelial cells in response to resveratrol treatment were investigated using proteomics approaches (2-DE combined with MS/MS). As a result, four down-regulated protein species named elongation factor 2 (EEF2), carboxymethyl-cofilin-1 (cofilin-1), acetyl-eukaryotic translation initiation factor 5A-1 (acetyl-EIF5A) and barrier-to-autointegration factor, and five up-regulated protein species named heat shock protein beta-1 (HSP27), phospho-HSP27, phospho-stathmin, Nicotinate-nucleotide pyrophosphorylase and 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase were identified. Among them, two translation-related protein species (EEF2 and acetyl-EIF5A) were the most significantly changed (over tenfold). Phospho-EEF2 was further verified to be dramatically up-regulated by immunoblot assays. It is notable that in the present study several protein species with post-transcriptional modification (carboxymethyl-, acetyl-, and phospho-) were found to be altered following exposure to resveratrol. These findings may improve our understanding of the molecular mechanisms underlying the pleiotropic effects of resveratrol on endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aging Statistics (2010) US Department of Health and Human Services. http://www.aoa.gov/aoaroot/aging_ statistics/index.aspx

  • Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA et al (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3(6):e2264

    Article  PubMed  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342

    Article  PubMed  CAS  Google Scholar 

  • Beher D, Wu J, Cumine S, Kim KW, Lu SC et al (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74(6):619–624

    Article  PubMed  CAS  Google Scholar 

  • Bertoni AG, Goff DC Jr, D’Agostino RB Jr, Liu K, Hundley WG, Lima JA et al (2006) Diabetic cardiomyopathy and subclinical cardiovascular disease: the multi-ethnic study of atherosclerosis (MESA). Diabetes Care 29(3):588–594

    Article  PubMed  Google Scholar 

  • Borradaile NM, Pickering JG (2009a) NAD(+), sirtuins, and cardiovascular disease. Curr Pharm Des 15(1):110–117

    Article  PubMed  CAS  Google Scholar 

  • Borradaile NM, Pickering JG (2009b) Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell 8(2):100–112

    Article  PubMed  CAS  Google Scholar 

  • Bradley CM, Ronning DR, Ghirlando R, Craigie R, Dyda F (2005) Structural basis for DNA bridging by barrier-to-autointegration factor. Nat Struct Mol Biol 12(10):935–936

    Article  PubMed  CAS  Google Scholar 

  • Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R (2011) Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 6(4):e19194

    Article  PubMed  CAS  Google Scholar 

  • Buryanovskyy L, Fu Y, Boyd M, Ma Y, Hsieh TC et al (2004) Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry 43(36):11417–11426

    Article  PubMed  CAS  Google Scholar 

  • Capanni C, Cenni V, Haraguchi T, Squarzoni S, Schüchner S, Ogris E et al (2010) Lamin A precursor induces barrier-to-autointegration factor nuclear localization. Cell Cycle 9(13):2600–2610

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13(2):64–71

    Article  PubMed  CAS  Google Scholar 

  • Csiszar A, Labinskyy N, Pinto JT, Ballabh P, Zhang H, Losonczy G et al (2009) Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 297(1):H13–H20

    Article  PubMed  CAS  Google Scholar 

  • Curmi PA, Gavet O, Charbaut E, Ozon S, Lachkar-Colmerauer S, Manceau V et al (1999) Stathmin and its phosphoprotein family: general properties, biochemical and functional interaction with tubulin. Cell Struct Funct 24(5):345–357

    Article  PubMed  CAS  Google Scholar 

  • de Figueiredo LF, Gossmann TI, Ziegler M, Schuster S (2011) Pathway analysis of NAD+ metabolism. Biochem J 439(2):341–348

    Article  PubMed  Google Scholar 

  • Dolinsky VW, Dyck JR (2011) Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta 1812(11):1477–1489

    Article  PubMed  CAS  Google Scholar 

  • Doshi BM, Hightower LE, Lee J (2010) HSPB1, actin filament dynamics, and aging cells. Ann N Y Acad Sci 1197:76–84

    Article  PubMed  CAS  Google Scholar 

  • Ferns G, Shams S, Shafi S (2006) Heat shock protein 27: its potential role in vascular disease. Int J Exp Pathol 87(4):253–274

    Article  PubMed  CAS  Google Scholar 

  • Gotoh I, Uekita T, Seiki M (2007) Regulated nucleo-cytoplasmic shuttling of human aci-reductone dioxygenase (hADI1) and its potential role in mRNA processing. Genes Cells 12(1):105–117

    Article  PubMed  CAS  Google Scholar 

  • Harikumar KB, Aggarwal BB (2008) Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 7(8):1020–1035

    Article  PubMed  CAS  Google Scholar 

  • Ishidoh K, Kamemura N, Imagawa T, Oda M, Sakurai J, Katunuma N (2010) Quinolinate phosphoribosyl transferase, a key enzyme in de novo NAD(+) synthesis, suppresses spontaneous cell death by inhibiting overproduction of active-caspase-3. Biochim Biophys Acta 1803(5):527–533

    Article  PubMed  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen R, Merrill AR, Andersen GR (2006) The life and death of translation elongation factor 2. Biochem Soc Trans 34(Pt 1):1–6

    PubMed  Google Scholar 

  • Jungblut PR, Holzhütter HG, Apweiler R, Schlüter H (2008) The speciation of the proteome. Chem Cent J. 2:16

    Article  PubMed  Google Scholar 

  • Kopp P (1998) Resveratrol, a phytoestrogen found in red wine. a possible explanation for the conundrum of the ‘French paradox’? Eur J Endocrinol 138(6):619–620

    Article  PubMed  CAS  Google Scholar 

  • Kostenko S, Moens U (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 66(20):3289–3307

    Article  PubMed  CAS  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Park JH, Kaevel J, Sramkova M, Weigert R, Park MH (2009) The effect of hypusine modification on the intracellular localization of EIF5A. Biochem Biophys Res Commun 383(4):497–502

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Feliers D, Sataranatarajan K, Mariappan MM, Li M, Barnes JL et al (2010) Resveratrol ameliorates high glucose-induced protein synthesis in glomerular epithelial cells. Cell Signal 22(1):65–70

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Park JH, Folk JE, Deck JA, Pegg AE, Sokabe M et al (2011) Inactivation of eukaryotic initiation factor 5A (eIF5A) by specific acetylation of its hypusine residue by spermidine/spermine acetyltransferase 1 (SSAT1). Biochem J 433(1):205–213

    Article  PubMed  CAS  Google Scholar 

  • Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S et al (2009) Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci USA 106(51):21984–21989

    Article  PubMed  CAS  Google Scholar 

  • McCullough BR, Grintsevich EE, Chen CK, Kang H, Hutchison AL, Henn A et al (2011) Cofilin-linked changes in actin filament flexibility promote severing. Biophys J 101(1):151–159

    Article  PubMed  CAS  Google Scholar 

  • Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS et al (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285(11):8340–8351

    Article  PubMed  CAS  Google Scholar 

  • Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8(2):157–168

    Article  PubMed  CAS  Google Scholar 

  • Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM et al (2011) Heart disease and stroke statistics—2011 update: a report from the American heart association. Circulation 123(4):e18–e209

    Article  PubMed  Google Scholar 

  • Rouzer CA, Marnett LJ (2009) Cyclooxygenases: structural and functional insights. J Lipid Res 50(Suppl):S29–S34

    Article  PubMed  Google Scholar 

  • Rubin CI, Atweh GF (2004) The role of stathmin in the regulation of the cell cycle. J Cell Biochem 93(2):242–250

    Article  PubMed  CAS  Google Scholar 

  • Ryazanov AG, Shestakova EA, Natapov PG (1988) Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334(6178):170–173

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Aggarwal BB (2006) Resveratrol: a polyphenol for all seasons. In: Resveratrol in health and disease. Boca Raton CRC Press 1–16, pp

  • Smoliga JM, Baur JA, Hausenblas HA (2011) Resveratrol and health—a comprehensive review of human clinical trials. Mol Nutr Food Res 55(8):1129–1141

    Article  PubMed  CAS  Google Scholar 

  • Tavernarakis N (2008) Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol 18(5):228–235

    Article  PubMed  CAS  Google Scholar 

  • Tong A, Zhang H, Li Z, Gou L, Wang Z, Wei H et al (2008a) Proteomic analysis of liver cancer cells treated with suberonylanilide hydroxamic acid. Cancer Chemother Pharmacol 61(5):791–802

    Article  PubMed  CAS  Google Scholar 

  • Tong A, Wu L, Lin Q, Lau QC, Zhao X, Li J et al (2008b) Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model. Proteomics 8(10):2012–2023

    Article  PubMed  CAS  Google Scholar 

  • Tseng SH, Lin SM, Chen JC, Su YH, Huang HY, Chen CK et al (2004) Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin Cancer Res 10(6):2190–2202

    Article  PubMed  CAS  Google Scholar 

  • Ungvari Z, Orosz Z, Labinskyy N, Rivera A, Xiangmin Z et al (2007) Increased mitochondrial H2O2 production promotes endothelial NF-kappaB activation in aged rat arteries. Am J Physiol Heart Circ Physiol 293(1):H37–H47

    Article  PubMed  CAS  Google Scholar 

  • Ungvari Z, Labinskyy N, Mukhopadhyay P, Pinto JT, Bagi Z, Ballabh P et al (2009) Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol 297(5):H1876–H1881

    Article  PubMed  CAS  Google Scholar 

  • Van Maele B, Busschots K, Vandekerckhove L, Christ F, Debyser Z (2006) Cellular co-factors of HIV-1 integration. Trends Biochem Sci 31(2):98–105

    Article  PubMed  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Schoonjans K, Auwerx J (2007) Sirtuin functions in health and disease. Mol Endocrinol 21(8):1745–1755

    Article  PubMed  CAS  Google Scholar 

  • Zhang J (2006) Resveratrol inhibits insulin responses in a SirT1-independent pathway. Biochem J 397(3):519–527

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National 973 Basic Research Program of China (2011CB910703) and Chinese NSFC (30900768 and 31171370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiping Tong.

Additional information

Bin Shao and Mei Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, B., Tang, M., Li, Z. et al. Proteomics analysis of human umbilical vein endothelial cells treated with resveratrol. Amino Acids 43, 1671–1678 (2012). https://doi.org/10.1007/s00726-012-1248-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1248-4

Keywords

Navigation