Skip to main content
Log in

Anti-tissue transglutaminase antibodies activate intracellular tissue transglutaminase by modulating cytosolic Ca2+ homeostasis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Anti-tissue transglutaminase (tTG) antibodies are specifically produced in the small-intestinal mucosa of celiac disease (CD) patients. It is now recognized that these antibodies, acting on cell-surface tTG, may play an active role in CD pathogenesis triggering an intracellular response via the activation of different signal transduction pathways. In this study, we report that anti-tTG antibodies, both commercial and from a CD patient, induce a rapid Ca2+ mobilization from intracellular stores in Caco-2 cells. We characterized the mechanism of Ca2+ release using thapsigargin and carbonylcyanide-p-trifluoromethoxyphenylhydrazone, which are able to deplete specifically endoplasmic reticulum and mitochondria of Ca2+, respectively. Our data highlight that both pathways of calcium release were involved, thus indicating that the spectrum of cellular responses downstream can be very wide. In addition, we demonstrate that the increased Ca2+ level in the cells evoked by anti-tTG antibodies was sufficient to activate tTG, which is normally present as a latent protein due to the presence of low Ca2+ and to the inhibitory effect of GTP/GDP. Herein, we discuss the importance of intracellular tTG activation as central in the context of CD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

tTG:

Tissue transglutaminase

CD:

Celiac disease

ERK:

Extracellular signal-regulated kinase

Fura-2AM:

Fura-2 acetoxymethyl ester

NK:

Normal Krebs

SERCA:

Sarco(endo)plasmic reticulum Ca2+ ATPase

THP:

Thapsigargin

FCCP:

Carbonylcyanide-p-trifluoromethoxyphenylhydrazone

PBS:

Phosphate-buffered saline

BSA:

Bovine serum albumin

ER:

Endoplasmic reticulum

References

  • Akimov SS, Belkin AM (2001) Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98:1567–1576. doi:10.1182/blood.V98.5.1567

    Article  PubMed  CAS  Google Scholar 

  • Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148:825–838. doi:10.1083/jcb.148.4.825

    Article  PubMed  CAS  Google Scholar 

  • Balklava Z, Verderio E, Collighan R, Gross S, Adams J, Griffin M (2002) Analysis of tissue transglutaminase function in the migration of Swiss 3T3 fibroblasts: the active-state conformation of the enzyme does not affect cell motility but is important for its secretion. J Biol Chem 277:16567–16575. doi:10.1074/jbc.M109836200

    Article  PubMed  CAS  Google Scholar 

  • Barone MV, Caputo I, Ribecco MT, Maglio M, Marzari R, Sblattero D, Troncone R, Auricchio S, Esposito C (2007) Humoral immune response to tissue transglutaminase is related to epithelial cell proliferation in celiac disease. Gastroenterology 132(4):1245–1253. doi:10.1053/j.gastro.2007.01.030

    Article  PubMed  CAS  Google Scholar 

  • Barone MV, Nanayakkara M, Paolella G, Maglio M, Vitale V, Troiano R, Ribecco MT, Lania G, Zanzi D, Santagata S, Auricchio R, Troncone R, Auricchio S (2010) Gliadin peptide P31–43 localises to endocytic vesicles and interferes with their maturation. PLoS One 5(8):e12246. doi:10.1371/journal.pone.0012246

    Article  PubMed  Google Scholar 

  • Briani C, Samaroo D, Alaedini A (2008) Celiac disease: from gluten to autoimmunity. Autoimmun Rev 7(8):644–650. doi:10.1016/j.autrev.2008.05.006

    Article  PubMed  CAS  Google Scholar 

  • Caja S, Mäki M, Kaukinen K, Lindfors K (2011) Antibodies in celiac disease: implications beyond diagnostics. Cell Mol Immunol 8(2):103–109. doi:10.1038/cmi.2010.65

    Article  PubMed  CAS  Google Scholar 

  • Caputo I, Barone MV, Martucciello S, Lepretti M, Esposito C (2009) Tissue transglutaminase in celiac disease: role of autoantibodies. Amino Acids 36(4):693–699. doi:10.1007/s00726-008-0120-z

    Article  PubMed  CAS  Google Scholar 

  • Caputo I, Barone MV, Lepretti M, Martucciello S, Nista I, Troncone R, Auricchio S, Sblattero D, Esposito C (2010) Celiac anti-tissue transglutaminase antibodies interfere with the uptake of alpha gliadin peptide 31–43 but not of peptide 57–68 by epithelial cells. Biochim Biophys Acta 1802(9):717–727. doi:10.1016/j.bbadis.2010.05.010

    Article  PubMed  CAS  Google Scholar 

  • Daniels I, Cavill D, Murray IA, Longb RG (2005) Elevated expression of iNOS mRNA and protein in celiac disease. Clin Chim Acta 356:134–142. doi:10.1016/j.cccn.2005.01.029

    Article  PubMed  CAS  Google Scholar 

  • Di Niro R, Ziller F, Florian F, Crovella S, Stebel M, Bestagno M, Burrone O, Bradbury AR, Secco S, Marzari R, Sblattero D (2007) Construction of miniantibodies for the in vivo study of human autoimmune diseases in animal models. BMC Biotechnol 7:46. doi:10.1186/1472-6750-7-46

  • Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3:797–801. doi:10.1038/nm0797-797

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA (2006) Calcium in cell injury and death. Annu Rev Pathol 1:405–434. doi:10.1146/annurev.pathol.1.110304.100218

    Article  PubMed  CAS  Google Scholar 

  • Esposito C, Caputo I, Auricchio S, Troncone R (2005) Tissue transglutaminase and celiac disease. Prog Exp Tumor Res 38:158–173. doi:10.1159/000084239

    Article  PubMed  CAS  Google Scholar 

  • Esposito G, Cirillo C, Sarnelli G, De Filippis D, D’Armiento FP, Rocco A, Tardone G, Petruzzelli R, Grosso M, Izzo P, Iuvone T, Cuomo R (2007) Enteric glial-derived s100b protein stimulates nitric oxide production in celiac disease. Gastroenterology 133(3):918–925. doi:10.1053/j.gastro.2007.06.009

    Article  PubMed  CAS  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396. doi:10.1042/BJ20021234

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    PubMed  CAS  Google Scholar 

  • Halttunen T, Mäki M (1999) Serum Immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterology 116:566–572. doi:10.1016/S0016-5085(99)70178-2

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373:793–803. doi:10.1042/BJ20021084

    Article  PubMed  CAS  Google Scholar 

  • Hodrea J, Demény MA, Majai G, Sarang Z, Korponay-Szabó IR, Fésüs L (2010) Transglutaminase 2 is expressed and active on the surface of human monocyte-derived dendritic cells and macrophages. Immunol Lett 130(1–2):74–81. doi:10.1016/j.imlet.2009.12.010

    Article  PubMed  CAS  Google Scholar 

  • Iismaa SE, Mearns BM, Lorand L, Graham RM (2009) Transglutaminases and disease: lessons from genetically engineered mouse models and inherited disorders. Physiol Rev 89(3):991–1023

    Article  PubMed  CAS  Google Scholar 

  • Jabri B, Sollid LM (2009) Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9(12):858–870. doi:10.1038/nri2670

    Article  PubMed  CAS  Google Scholar 

  • Janiak A, Zemskov EA, Belkin AM (2006) Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src–p190RhoGAP signaling pathway. Mol Biol Cell 17:1606–1619. doi:10.1091/mbc.E05-06-0549

    Article  PubMed  CAS  Google Scholar 

  • Jeitner TM, Muma NA, Battaile KP, Cooper AJ (2009) Transglutaminase activation in neurodegenerative diseases. Future Neurol 4(4):449–467. doi:10.2217/fnl.09.17

    Article  PubMed  CAS  Google Scholar 

  • Kaukinen K, Peräaho M, Collin P, Partanen J, Woolley N, Kaartinen T, Nuutinen T, Halttunen T, Mäki M, Korponay-Szabo I (2005) Small-bowel mucosal transglutaminase 2-specific IgA deposits in coeliac disease without villous atrophy: a prospective and randomized clinical study. Scand J Gastroenterol 40:564–572. doi:10.1080/00365520510023422

    Article  PubMed  CAS  Google Scholar 

  • Korponay-Szabo IR, Halttunen T, Szalai Z, Laurila K, Kiraly R, Kovacs JB, Fesus L, Maki M (2004) In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut 53:641–648. doi:10.1136/gut.41.6.851

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, Kim SY (2004) Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem. 279(51):53725–53735. doi:10.1074/jbc.M407627200

    Article  PubMed  CAS  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156. doi:10.1038/nrm1014

    Article  PubMed  CAS  Google Scholar 

  • Luciani A, Villella VR, Vasaturo A, Giardino I, Pettoello-Mantovani M, Guido S, Cexus ON, Peake N, Londei M, Quaratino S, Maiuri L (2010) Lysosomal accumulation of gliadin p31–43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARgamma downregulation in intestinal epithelial cells and coeliac mucosa. Gut 59(3):311–319

    Article  PubMed  Google Scholar 

  • Maiuri L, Luciani A, Giardino I, Raia V, Villella VR, D’Apolito M, Pettoello-Mantovani M, Guido S, Ciacci C, Cimmino M, Cexus ON, Londei M, Quaratino S (2008) Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 180(11):7697–7705

    PubMed  CAS  Google Scholar 

  • Marzari R, Sblattero D, Florian F, Tongiorgi E, Not T, Tommasini A, Ventura A, Bradbury A (2001) Molecular dissection of the tissue transglutaminase autoantibody response in celiac in celiac disease. J Immunol 166:4170–4176

    PubMed  CAS  Google Scholar 

  • Mehta K, Kumar A, Kim HI (2010) Transglutaminase 2: A multi-tasking protein in the complex circuitry of inflammation and cancer. Biochem Pharmacol 80:1921–1929. doi:10.1016/j.bcp.2010.06.029

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279:23863–23868. doi:10.1074/jbc.M311919200

    Article  PubMed  CAS  Google Scholar 

  • Myrsky E, Caja S, Simon-Vecsei Z, Korponay-Szabo IR, Nadalutti C, Collighan R, Mongeot A, Griffin M, Mäki M, Kaukinen K, Lindfors K (2009) Celiac disease IgA modulates vascular permeability in vitro through the activity of transglutaminase 2 and RhoA. Cell Mol Life Sci 66(20):3375–3385. doi:10.1007/s00018-009-0116-1

    Article  PubMed  CAS  Google Scholar 

  • Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K et al (1994) Gh: a GTP binding protein with transglutaminase activity and receptor signaling function. Science 264:1593–1596. doi:10.1126/science.7911253

    Article  PubMed  CAS  Google Scholar 

  • Orrù S, Caputo I, D’Amato A, Ruoppolo M, Esposito C (2003) Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. Implications for celiac disease. J Biol Chem 278(34):31766–31773. doi:10.1074/jbc.M305080200

    Article  PubMed  Google Scholar 

  • Reif S, Lerner A (2004) Tissue transglutaminase-the key player in celiac disease: a review. Autoimmun Rev 3:40–45. doi:10.1016/S1568-9972(03)00065-X

    Article  PubMed  CAS  Google Scholar 

  • Robitaille K, Daviau A, Tucholski J, Johnson GV, Rancourt C, Blouin R (2004) Tissue transglutaminase triggers oligomerization and activation of dual leucine zipper-bearing kinase in calphostin C-treated cells to facilitate apoptosis. Cell Death Differ 11:542–549. doi:10.1038/sj.cdd.4401392

    Article  PubMed  CAS  Google Scholar 

  • Salmi TT, Collin P, Korponay-Szabó IR, Laurila K, Partanen J, Huhtala H, Király R, Lorand L, Reunala T, Mäki M, Kaukinen K (2006) Endomysial antibody-negative coeliac disease: clinical characteristics and intestinal autoantibody deposits. Gut 55:1746–1753. doi:10.1136/gut.2005.071514

    Article  PubMed  CAS  Google Scholar 

  • Secondo A, Staiano RI, Scorziello A, Sirabella R, Boscia F, Adornetto A, Valsecchi V, Molinaro P, Canzoniero LM, Di Renzo G, Annunziato L (2007) BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: Possible relationship with mitochondrial membrane potential. Cell Calcium 42(6):521–535. doi:10.1016/j.ceca.2007.01.006

    Article  PubMed  CAS  Google Scholar 

  • Sollid LM (2002) Coelic disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2:647–655. doi:10.1038/nri885

    Article  PubMed  CAS  Google Scholar 

  • Sollid LM, Molberg O, McAdam S, Lundin KE (1997) Autoantibodies in coeliac disease: Tissue transglutaminase-guilt by association? Gut 41:851–852. doi:10.1136/gut.41.6.851

    Article  PubMed  CAS  Google Scholar 

  • Zanoni G, Navone R, Lunardi C, Tridente G, Bason C, Sivori S, Beri R, Dolcino M, Valletta E, Corrocher R, Puccetti A (2006) In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med 3(9):e358. doi:10.1371/journal.pmed.0030358

    Article  PubMed  Google Scholar 

  • Zemskov EA, Janiak A, Hang J, Waghray A, Belkin AM (2006) The role of tissue transglutaminase in cell-matrix interactions. Front Biosci 11:1057–1076. doi:10.2741/1863

    Article  PubMed  CAS  Google Scholar 

  • Zemskov EA, Loukinova E, Mikhailenko I, Coleman RA, Strickland DK, Belkin AM (2009) Regulation of platelet-derived growth factor receptor function by integrin-associated cell surface transglutaminase. J Biol Chem 284:16693–16703. doi:10.1074/jbc.M109.010769

    Article  PubMed  CAS  Google Scholar 

  • Zemskov EA, Mikhailenko I, Hsia RC, Zaritskaya L, Belkin AM (2011) Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS ONE 6(4):e19414. doi:10.1371/journal.pone.0019414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from Fondi di Ateneo per la Ricerca di Base (FARB-ex 60%) and EC Marie Curie Research Training Network (contract n. MRTN-CT-20010-289964).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Esposito.

Additional information

I. Caputo and M. Lepretti contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caputo, I., Lepretti, M., Secondo, A. et al. Anti-tissue transglutaminase antibodies activate intracellular tissue transglutaminase by modulating cytosolic Ca2+ homeostasis. Amino Acids 44, 251–260 (2013). https://doi.org/10.1007/s00726-011-1120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1120-y

Keywords

Navigation