Skip to main content
Log in

Olfactory sensitivity for six amino acids: a comparative study in CD-1 mice and spider monkeys

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Using a conditioning paradigm, the olfactory sensitivity of five CD-1 mice for the l- and d-forms of cysteine, methionine, and proline was investigated. With all six stimuli, the animals discriminated concentrations ≤0.1 ppm (parts per million) from the odorless solvent, and with three of the six stimuli the best-scoring animals were even able to detect concentrations <0.1 ppb (parts per billion). Three spider monkeys tested in parallel were found to detect the same six stimuli at concentrations <1 ppm, and with four of the six stimuli the best-scoring animals detected concentrations ≤1 ppb. Both CD-1 mice and spider monkeys displayed a higher olfactory sensitivity with the l- and d-forms of cysteine and methionine than with the prolines, suggesting an important role of the sulfur-containing functional groups for detectability. Accordingly, the across-odorant patterns of detection thresholds obtained with mice and spider monkeys showed a significant positive correlation. A comparison of the detection thresholds between the two species tested here and those obtained in human subjects suggests that neither the number of functional olfactory receptor genes nor the absolute or the relative size of the olfactory bulbs reliably predicts a species’ olfactory sensitivity for amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bodyak N, Slotnick B (1999) Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory. Chem Senses 24:637–645

    Article  PubMed  CAS  Google Scholar 

  • Caprio J (1977) Electrophysiological distinction between the taste and smell of amino acids in catfish. Nature 266:850–851

    Article  PubMed  CAS  Google Scholar 

  • Caprio J, Byrd RP (1984) Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptors in the catfish. J Gen Physiol 84:403–422

    Article  PubMed  CAS  Google Scholar 

  • Doty RL (1991) Psychophysical measurement of odor perception in humans. In: Laing DG, Doty RL, Breipohl W (eds) The human sense of smell. Springer, New York, pp 95–134

    Chapter  Google Scholar 

  • Dykyi J, Svoboda J, Wilhiot RC, Frenkel M, Hall KR (2001) Landolt–Börnstein. Numerical data and functional relationships in science and technology, Group IV, Part C, vol 20. Springer, New York

    Google Scholar 

  • Ferrer RP, Zimmer RK (2007) The scent of danger: arginine as an olfactory cue of reduced predation risk. J Exp Biol 210:1768–1775

    Article  PubMed  CAS  Google Scholar 

  • Gilad Y, Wiebe V, Przeworksi E, Lancet D, Pääbo S (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol 2:e5

    Article  PubMed  Google Scholar 

  • Haefeli RJ, Glaser D (1990) Taste responses and thresholds obtained with the primary amino acids in humans. Lebensm Wiss Technol 23:523–527

    CAS  Google Scholar 

  • Hastings L (2003) Psychophysical evaluation of olfaction in nonhuman mammals. In: Doty RL (ed) Handbook of olfaction and gustation, 2nd edn. Marcel Dekker, New York, pp 385–401

    Google Scholar 

  • Hernandez Salazar LT, Laska M, Rodriguez Luna E (2003) Olfactory sensitivity for aliphatic esters in spider monkeys, Ateles geoffroyi. Behav Neurosci 117:1142–1149

    Article  PubMed  Google Scholar 

  • Inoue R, Nakatani K (2010) Changes in the olfactory response to amino acids in Japanese newts after transfer from an aquatic to a terrestrial habitat. Zool Sci 27:369–373

    Article  PubMed  Google Scholar 

  • Iwasaki K, Kasahara T, Sato M (1985) Gustatory effectiveness of amino acids in mice: behavioral and neurophysiological studies. Physiol Behav 34:531–542

    Article  PubMed  CAS  Google Scholar 

  • Joshi D, Völkl M, Shepherd GM, Laska M (2006) Olfactory sensitivity for enantiomers and their racemic mixtures—a comparative study in CD-1 mice and spider monkeys. Chem Senses 31:655–664

    Article  PubMed  CAS  Google Scholar 

  • Keverne EB (2004) Brain evolution, chemosensory processing, and behavior. Nutr Rev 62:218–223

    Article  Google Scholar 

  • Kovacevic N, Henderson JT, Chan E, Lifshitz N, Bishop J, Evans AC, Henkelmann RM, Chen XJ (2005) A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex 15:639–645

    Article  PubMed  CAS  Google Scholar 

  • Laska M (2004) Olfactory discrimination ability of human subjects for enantiomers with an isopropenyl group at the chiral center. Chem Senses 29:143–152

    Article  PubMed  Google Scholar 

  • Laska M (2010) Olfactory perception of 6 amino acids by human subjects. Chem Senses 35:279–287

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Teubner P (1999) Olfactory discrimination ability of human subjects for ten pairs of enantiomers. Chem Senses 24:161–170

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Hernandez Salazar LT, Rodriguez Luna E (2003) Successful acquisition of an olfactory discrimination paradigm by spider monkeys (Ateles geoffroyi). Physiol Behav 78:321–329

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Wieser A, Rivas Bautista RM, Hernandez Salazar LT (2004) Olfactory sensitivity for carboxylic acids in spider monkeys and pigtail macaques. Chem Senses 29:101–109

    Article  PubMed  Google Scholar 

  • Laska M, Wieser A, Hernandez Salazar LT (2005) Olfactory responsiveness to two odorous steroids in three species of nonhuman primates. Chem Senses 30:505–511

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Höfelmann D, Huber D, Schumacher M (2006a) Does the frequency of occurrence of odorants in the chemical environment determine olfactory sensitivity? A study with acyclic monoterpene alcohols in three species of nonhuman primates. J Chem Ecol 32:1317–1331

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Joshi D, Shepherd GM (2006b) Olfactory sensitivity for aliphatic aldehydes in CD-1 mice. Behav Brain Res 167:349–354

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Rivas Bautista RM, Hernandez Salazar LT (2006c) Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys, Ateles geoffroyi. Am J Phys Anthropol 129:112–120

    Article  PubMed  Google Scholar 

  • Laska M, Wieser A, Hernandez Salazar LT (2006d) Sex-specific differences in olfactory sensitivity for putative human pheromones in nonhuman primates. J Comp Psychol 120:106–112

    Article  PubMed  Google Scholar 

  • Laska M, Rivas Bautista RM, Höfelmann D, Sterlemann V, Hernandez Salazar LT (2007) Olfactory sensitivity for putrefaction-associated thiols and indols in three species of nonhuman primates. J Exp Biol 210:4169–4178

    Article  PubMed  CAS  Google Scholar 

  • Laska M, Persson O, Hernandez Salazar LT (2009) Olfactory sensitivity for alkylpyrazines–a comparative study in CD-1 mice and spider monkeys. J Exp Zool A 311:278–288

    Google Scholar 

  • Luu P, Acher F, Bertrand HO, Fan J, Ngai J (2004) Molecular determinants of ligand selectivity in a vertebrate odorant receptor. J Neurosci 24:10128–10137

    Article  PubMed  CAS  Google Scholar 

  • Maarse H (1991) Volatile compounds in foods and beverages. Marcel Dekker, New York

    Google Scholar 

  • Michel WC, Lubomudrov LM (1995) Specificity and sensitivity of the olfactory organ of the zebrafish, Danio rerio. J Comp Physiol A 177:191–199

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nature Rev Genet 9:951–963

    Article  PubMed  CAS  Google Scholar 

  • Niimura Y, Nei M (2006) Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet 51:505–517

    Article  PubMed  CAS  Google Scholar 

  • Nikonov AA, Caprio J (2001) Electrophysiological evidence for a chemotopy of biologically relevant odors in the olfactory bulb of the channel catfish. J Neurophysiol 86:1869–1876

    PubMed  CAS  Google Scholar 

  • Nikonov AA, Caprio J (2007a) Highly specific olfactory receptor neurons for types of amino acids in the channel catfish. J Neurophysiol 98:1909–1918

    Article  PubMed  CAS  Google Scholar 

  • Nikonov AA, Caprio J (2007b) Responses of olfactory forebrain units to amino acids in the channel catfish. J Neurophysiol 97:2490–2498

    Article  PubMed  CAS  Google Scholar 

  • Pomeroy SL, La Mantia AS, Purves D (1990) Postnatal construction of neural circuitry in the mouse olfactory bulb. J Neurosci 10:1952–1966

    PubMed  CAS  Google Scholar 

  • Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci USA 97:2870–2874

    Article  PubMed  CAS  Google Scholar 

  • Schiffman SS, Sennewald K, Gagnon J (1981) Comparison of taste qualities and thresholds of d- and l-amino acids. Physiol Behav 27:51–59

    Article  PubMed  CAS  Google Scholar 

  • Starkenmann C, Le Calvé B, Niclass Y, Cayeux I, Beccucci S, Troccaz M (2008a) Olfactory perception of cysteine-S conjugates from fruits and vegetables. J Agric Food Chem 56:9575–9580

    Article  PubMed  CAS  Google Scholar 

  • Starkenmann C, Troccaz M, Howell K (2008b) The role of cysteine and cysteine-S conjugates as odour precursors in the flavour and fragrance industry. Flavour Fragrance J 23:369–381

    Article  CAS  Google Scholar 

  • Stephan H, Baron G, Frahm HD (1988) Comparative size of brains and brain components. In: Steklis HD, Erwin J (eds) Comparative primate biology, vol 4. Alan R. Liss, New York, pp 1–38

    Google Scholar 

  • Tricas TC, Kajiura SM, Summers AP (2009) Response of the hammerhead shark olfactory epithelium to amino acid stimuli. J Comp Physiol A 195:947–954

    Article  CAS  Google Scholar 

  • Weast RC (1987) Handbook of chemistry and physics, 68th edn. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

Financial support by the Consejo Nacional de Ciencia y Tecnologia (CONACYT Mexico) to Laura Teresa Hernandez Salazar (J-51435-IV) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Laska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallén, H., Engström, I., Hernandez Salazar, L.T. et al. Olfactory sensitivity for six amino acids: a comparative study in CD-1 mice and spider monkeys. Amino Acids 42, 1475–1485 (2012). https://doi.org/10.1007/s00726-011-0951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0951-x

Keywords

Navigation