Skip to main content

Advertisement

Log in

The knockdown of Ha-GRIM-19 by RNA interference induced programmed cell death

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

GRIM-19 (genes associated with retinoid-IFN-induced mortality-19) is a subunit of mitochondrial respiratory complex I in mammalian systems. However, its function in vivo is not really understood. We cloned GRIM-19 and explored its function and hormonal regulation in insect, the cotton bollworm, Helicoverpa armigera. The results showed that Ha-GRIM-19 was highly expressed during the larval stage. Its transcript levels could be upregulated by juvenile hormone (JH) analog methoprene or by methoprene plus 20E. The methoprene-upregulated transcription enhancement of Ha-GRIM-19 was mediated by the transcription factor Ha-Met1, the putative receptor of JH. Other transcription factors Ha-USP1 and Ha-Br-Z2 suppressed the action of methoprene in inducing Ha-GRIM-19 expression, but Ha-Br-Z2 introduced interaction between 20E and methoprene in upregulation of Ha-GRIM-19. The knockdown of Ha-GRIM-19 by RNA interference in larvae and in insect cell line induced programmed cell death. These data imply that Ha-GRIM-19 plays role in keeping the normal cellular growth and it is able to be upregulated by methoprene through putative JH receptor Met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altincicek B, Vilcinskas A (2008) Identification of a lepidopteran matrix metalloproteinase with dual roles in metamorphosis and innate immunity. Dev Comp Immunol 32(4):400–409

    Article  PubMed  CAS  Google Scholar 

  • Angell JE, Lindner DJ, Shapiro PS, Hofmann ER, Kalvakolanu DV (2000) Identification of grim-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J Biol Chem 275(43):33416–33426

    Article  PubMed  CAS  Google Scholar 

  • Bayer CA, Holley B, Fristrom JW (1996) A switch in broad-complex zinc-finger isoform expression is regulated posttranscriptionally during the metamorphosis of Drosophila imaginal discs. Dev Biol 177(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    PubMed  CAS  Google Scholar 

  • Deveraux QL, Reed JC (1999) IAP family proteins-suppressors of apoptosis. Genes Dev 13(3):239–252

    Article  PubMed  CAS  Google Scholar 

  • DiBello PR, Withers DA, Bayer CA, Fristrom JW, Guild GM (1991) The Drosophila broad-complex encodes a family of related proteins containing zinc fingers. Genetics 129(2):385–397

    PubMed  CAS  Google Scholar 

  • Dubrovsky EB (2005) Hormonal cross talk in insect development. Trends Endocrinol Metab 16(1):6–11

    Article  PubMed  CAS  Google Scholar 

  • Fearnley IM, Carroll J, Shannon RJ, Runswick MJ, Walker JE, Hirst J (2001) GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 276(42):38345–38348

    Article  PubMed  CAS  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Lu H, Hao A, Ng DC, Ponniah S, Guo K, Lufei C, Zeng Q, Cao X (2004) GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol Cell Biol 24(19):8447–8456

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Chen Y, Lu H, Cao X (2007) Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoic acid-induced cancer cell death. Cell Death Differ 14(2):327–337

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Sharp PA (1997) Ultraspiracle: an invertebrate nuclear receptor for juvenile hormones. Proc Natl Acad Sci USA 94(25):13499–13503

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Jones D, Teal P, Sapa A, Wozniak M (2006) The retinoid-X receptor ortholog, ultraspiracle, binds with nanomolar affinity to an endogenous morphogenetic ligand. FEBS J 273(21):4983–4996

    Article  PubMed  CAS  Google Scholar 

  • Knorr E, Schmidtberg H, Vilcinskas A, Altincicek B (2009) MMPs regulate both development and immunity in the Tribolium model insect. PLoS One 4(3):e4751

    Article  PubMed  Google Scholar 

  • Konopova B, Jindra M (2008) Broad-complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. Development 135(3):559–568

    Article  PubMed  CAS  Google Scholar 

  • Lawen A (2003) Apoptosis—an introduction. Bioessays 25(9):888–896

    Article  PubMed  CAS  Google Scholar 

  • Lindner DJ, Borden EC, Kalvakolanu DV (1997) Synergistic antitumor effects of a combination of interferons and retinoic acid on human tumor cells in vitro and in vivo. Clin Cancer Res 3(6):931–937

    PubMed  CAS  Google Scholar 

  • Lockshin RA, Zakeri Z (2001) Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2(7):545–550

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Cao X (2008) GRIM-19 is essential for maintenance of mitochondrial membrane potential. Mol Biol Cell 19(5):1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Maximo V, Lima J, Soares P, Silva A, Bento I, Sobrinho-Simoes M (2008) GRIM-19 in health and disease. Adv Anat Pathol 15(1):46–53

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Oda M, Makita S, Chinzei Y (2005) Characterization of the drosophila methoprene -tolerant gene product. Juvenile hormone binding and ligand-dependent gene regulation. FEBS J 272(5):1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Stiebler R, Fantappie MR, Fialho E, Masuda H, Oliveira MF (2007) Effects of retinoids and juvenoids on moult and on phenoloxidase activity in the blood-sucking insect Rhodnius prolixus. Acta Trop 103(3):222–230

    Article  PubMed  CAS  Google Scholar 

  • Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112(4):481–490

    Article  PubMed  CAS  Google Scholar 

  • Nishiura JT, Ray K, Murray J (2005) Expression of nuclear receptor-transcription factor genes during Aedes aegypti midgut metamorphosis and the effect of methoprene on expression. Insect Biochem Mol Biol 35(6):561–573

    Article  PubMed  CAS  Google Scholar 

  • Page-McCaw A, Serano J, Sante JM, Rubin GM (2003) Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell 4(1):95–106

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy R, Palli SR (2007) Developmental and hormonal regulation of midgut remodeling in a lepidopteran insect, Heliothis virescens. Mech Dev 124(1):23–34

    Article  PubMed  CAS  Google Scholar 

  • Riddiford LM (2008) Juvenile hormone action: a 2007 perspective. J Insect Physiol 54(6):895–901

    Article  PubMed  CAS  Google Scholar 

  • Riddiford LM, Hiruma K, Zhou X, Nelson CA (2003) Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol 33(12):1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Shao HL, Zheng WW, Liu PC, Wang Q, Wang JX, Zhao XF (2008) Establishment of a new cell line from lepidopteran epidermis and hormonal regulation on the genes. PLoS One 3(9):e3127

    Article  PubMed  Google Scholar 

  • Staal GB (1975) Insect growth regulators with juvenile hormone activity. Annu Rev Entomol 20:417–460

    Article  PubMed  CAS  Google Scholar 

  • Thummel CS, Chory J (2002) Steroid signaling in plants and insects—common themes, different pathways. Genes Dev 16(24):3113–3129

    Article  PubMed  CAS  Google Scholar 

  • Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4(7):e6225

    Article  PubMed  Google Scholar 

  • Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263(1–2):103–112

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DE, Nijhout HF (2003) A perspective for understanding the modes of juvenile hormone action as a lipid signaling system. Bioessays 25(10):994–1001

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth V (1972) The principles of insect physiology. Chapman Hall, London, pp 476–552

    Book  Google Scholar 

  • Wilson TG (1996) Genetic evidence that mutants of the methoprene-tolerant gene of Drosophila melanogaster are null mutants. Arch Insect Biochem Physiol 32(3–4):641–649

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chai L, Wang J, Zhao X (2008) Molecular cloning and characterization of Hearm caspase-1 from Helicoverpa armigera. Mol Biol Rep 35(3):405–412

    Article  PubMed  CAS  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 181(5):1661–1672

    Article  PubMed  CAS  Google Scholar 

  • Zhao XF, Wang JX, Xu XL, Schmid R, Wieczorek H (2002) Molecular cloning and characterization of the cathepsin B-like proteinase from the cotton boll worm, Helicoverpa armigera. Insect Mol Biol 11(6):567–575

    Article  PubMed  CAS  Google Scholar 

  • Zhao XF, An XM, Wang JX, Dong DJ, Du XJ, Sueda S, Kondo H (2005) Expression of the Helicoverpa cathepsin B-like proteinase during embryonic development. Arch Insect Biochem Physiol 58(1):39–46

    Article  PubMed  CAS  Google Scholar 

  • Zheng WW, Yang DT, Wang JX, Song QS, Gilbert LI, Zhao XF (2009) Hsc70 binds to ultraspiracle resulting in the upregulation of 20-hydroxyecdsone-responsive genes in Helicoverpa armigera. Mol Cell Endocrinol 315(1–2):282–291

    PubMed  Google Scholar 

  • Zhou X, Riddiford LM (2002) Broad specifies pupal development and mediates the ‘status quo’ action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 129(9):2259–2269

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 30900148 and 30710103901), The National Science Foundation for Post-doctoral Scientists of China (No. 20100471533) and The Shandong Province Postdoctoral Special Funds for Innovative Projects (No. 200802019). We thank Drs. Marek Jindra and Masako Asahina of the Biology Center, Czech Academy of Sciences and Department of Molecular Biology, University of South Bohemia, Czech Republic, for providing plasmid L4440 and HT115 (DE3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fan Zhao.

Additional information

The nucleotide sequence reported in this paper has been submitted to GenBank with accession number: HM369463.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, DJ., Liu, PC., Wang, JX. et al. The knockdown of Ha-GRIM-19 by RNA interference induced programmed cell death. Amino Acids 42, 1297–1307 (2012). https://doi.org/10.1007/s00726-010-0824-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0824-8

Keywords

Navigation