Skip to main content
Log in

Identification and origin of -homocysteinyl-lysine isopeptide in humans and mice

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Homocysteine (Hcy) metabolites, Hcy-thiolactone and N-Hcy-proteins, have been linked to the pathology of human cardiovascular and neurodegenerative diseases. Hcy-thiolactone is generated in an error-editing reaction in protein biosynthesis when Hcy is selected in place of methionine by methionyl-tRNA synthetase. N-Hcy-protein, in which Hcy is linked via isopeptide bond to ε-amino group of a protein lysine residue, forms in a post-translational reaction of Hcy-thiolactone with proteins. Here, we identify a novel metabolite, Nε-Hcy-Lys, in human and mouse plasma, and show that this metabolite is elevated in genetic (cystathionine β-synthase deficiency in humans and mice, methylenetetrahydrofolate reductase deficiency in mice) or dietary (high Met diet in mice) deficiencies in Hcy metabolism. We also show that Nε-Hcy-Lys is generated by proteolytic degradation of N-Hcy-protein in mouse liver extracts. Our data indicate that free Nε-Hcy-Lys is an important pathology-related component of Hcy metabolism in humans and mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bald E, Chwatko G, Glowacki R, Kusmierek K (2004) Analysis of plasma thiols by high-performance liquid chromatography with ultraviolet detection. J Chromatogr A 1032:109–115

    Article  CAS  PubMed  Google Scholar 

  • Chwatko G, Jakubowski H (2005a) The determination of homocysteine-thiolactone in human plasma. Anal Biochem 337:271–277

    Article  CAS  PubMed  Google Scholar 

  • Chwatko G, Jakubowski H (2005b) Urinary excretion of homocysteine-thiolactone in humans. Clin Chem 51:408–415

    Article  CAS  PubMed  Google Scholar 

  • Chwatko G, Boers GH, Strauss KA, Shih DM, Jakubowski H (2007) Mutations in methylenetetrahydrofolate reductase or cystathionine beta-synthase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. FASEB J 21:1707–1713

    Article  CAS  PubMed  Google Scholar 

  • Daneshvar P, Yazdanpanah M, Cuthbert C, Cole DE (2003) Quantitative assay of plasma homocysteine thiolactone by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 17:358–362

    Article  CAS  PubMed  Google Scholar 

  • Ferretti G, Bacchetti T, Moroni C, Vignini A, Nanetti L, Curatola G (2004) Effect of homocysteinylation of low density lipoproteins on lipid peroxidation of human endothelial cells. J Cell Biochem 92:351–360

    Article  CAS  PubMed  Google Scholar 

  • Glowacki R, Bald E (2009) Fully automated method for simultaneous determination of total cysteine, cysteinylglycine, glutathione and homocysteine in plasma by HPLC with UV absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci 877:3400–3404

    Article  CAS  PubMed  Google Scholar 

  • Glowacki R, Jakubowski H (2004) Cross-talk between Cys34 and lysine residues in human serum albumin revealed by N-homocysteinylation. J Biol Chem 279:10864–10871

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Lu J, Yang G, Dou J, Mu Y, Meng J, Pan C (2008) Plasma homocysteine thiolactone associated with risk of macrovasculopathy in Chinese patients with type 2 diabetes mellitus. Adv Ther 25:914–924

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (1997) Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem 272:1935–1942

    CAS  PubMed  Google Scholar 

  • Jakubowski H (1999) Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J 13:2277–2283

    CAS  PubMed  Google Scholar 

  • Jakubowski H (2000) Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr 130:377S–381S

    CAS  PubMed  Google Scholar 

  • Jakubowski H (2002a) The determination of homocysteine-thiolactone in biological samples. Anal Biochem 308:112–119

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (2002b) Homocysteine is a protein amino acid in humans. Implications for homocysteine-linked disease. J Biol Chem 277:30425–30428

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (2005) Anti-N-homocysteinylated protein autoantibodies and cardiovascular disease. Clin Chem Lab Med 43:1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H (2008) New method for the determination of protein N-linked homocysteine. Anal Biochem 380:257–261

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H, Goldman E (1993) Synthesis of homocysteine thiolactone by methionyl-tRNA synthetase in cultured mammalian cells. FEBS Lett 317:237–240

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H, Zhang L, Bardeguez A, Aviv A (2000) Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res 87:45–51

    CAS  PubMed  Google Scholar 

  • Jakubowski H, Boers GH, Strauss KA (2008) Mutations in cystathionine beta-synthase or methylenetetrahydrofolate reductase gene increase N-homocysteinylated protein levels in humans. FASEB J 22:4071–4076

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski H, Perla-Kajan J, Finnell RH, Cabrera RM, Wang H, Gupta S, Kruger WD, Kraus JP, Shih DM (2009) Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. FASEB J 23:1721–1727

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH, Finkelstein JD, Refsum H, Ueland PM, Malinow MR, Lentz SR, Jacobsen DW, Brattstrom L, Wilcken B, Wilcken DE, Blom HJ, Stabler SP, Allen RH, Selhub J, Rosenberg IH (2000) Homocysteine and its disulfide derivatives: a suggested consensus terminology. Arterioscler Thromb Vasc Biol 20:1704–1706

    CAS  PubMed  Google Scholar 

  • Mudd SH, Levy HL, Krauss JP (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease, vol 2. Mc Graw-Hill, New York, pp 2007–2056

    Google Scholar 

  • Paoli P, Sbrana F, Tiribilli B, Caselli A, Pantera B, Cirri P, De Donatis A, Formigli L, Nosi D, Manao G, Camici G, Ramponi G (2010) Protein N-homocysteinylation induces the formation of toxic amyloid-like aggregates. J Mol Biol (in press)

  • Perla-Kajan J, Marczak L, Kajan L, Skowronek P, Twardowski T, Jakubowski H (2007) Modification by homocysteine thiolactone affects redox status of cytochrome c. Biochemistry 46:6225–6231

    Article  CAS  PubMed  Google Scholar 

  • Perla-Kajan J, Stanger O, Luczak M, Ziolkowska A, Malendowicz LK, Twardowski T, Lhotak S, Austin RC, Jakubowski H (2008) Immunohistochemical detection of N-homocysteinylated proteins in humans and mice. Biomed Pharmacother 62:473–479

    Article  CAS  PubMed  Google Scholar 

  • Perna AF, Satta E, Acanfora F, Lombardi C, Ingrosso D, De Santo NG (2006) Increased plasma protein homocysteinylation in hemodialysis patients. Kidney Int 69:869–876

    Article  CAS  PubMed  Google Scholar 

  • Sauls DL, Lockhart E, Warren ME, Lenkowski A, Wilhelm SE, Hoffman M (2006) Modification of fibrinogen by homocysteine thiolactone increases resistance to fibrinolysis: a potential mechanism of the thrombotic tendency in hyperhomocysteinemia. Biochemistry 45:2480–2487

    Article  CAS  PubMed  Google Scholar 

  • Sibrian-Vazquez M, Escobedo JO, Lim S, Samoei GK, Strongin RM (2010) Homocystamides promote free-radical and oxidative damage to proteins. Proc Natl Acad Sci USA 107:551–554

    Article  CAS  PubMed  Google Scholar 

  • Uji Y, Motomiya Y, Hanyu N, Ukaji F, Okabe H (2002) Protein-bound homocystamide measured in human plasma by HPLC. Clin Chem 48:941–944

    CAS  PubMed  Google Scholar 

  • Wang Z, Tang WH, Cho L, Brennan DM, Hazen SL (2009) Targeted metabolomic evaluation of arginine methylation and cardiovascular risks: potential mechanisms beyond nitric oxide synthase inhibition. Arterioscler Thromb Vasc Biol 29:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Gao Y, Zhou J, Zhen Y, Yang Y, Wang J, Song L, Liu Y, Xu H, Chen Z, Hui R (2006) Plasma homocysteine thiolactone adducts associated with risk of coronary heart disease. Clin Chim Acta Int J Clin Chem 364:230–234

    Article  CAS  Google Scholar 

  • Zang T, Dai S, Chen D, Lee BW, Liu S, Karger BL, Zhou ZS (2009) Chemical methods for the detection of protein N-homocysteinylation via selective reactions with aldehydes. Anal Chem 81:9065–9071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the American Heart Association (0855919D) and the Ministry of Science and Higher Education, Poland (NN 401 230634, N401 065 32/1504, POIG.01.03.01-00-097/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieronim Jakubowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Głowacki, R., Bald, E. & Jakubowski, H. Identification and origin of -homocysteinyl-lysine isopeptide in humans and mice. Amino Acids 39, 1563–1569 (2010). https://doi.org/10.1007/s00726-010-0627-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0627-y

Keywords

Navigation