Skip to main content

Advertisement

Log in

Protective effect of isoflavones against homocysteine-mediated neuronal degeneration in SH-SY5Y cells

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Previously, we reported that isoflavones exert a protective effect against the endoplasmic reticulum (ER) stress-mediated neuronal degeneration, and ER stress-mediated homocysteine toxicity may play an important role in the pathogenesis of neurodegeneration. Therefore, in this study we investigated the effects of isoflavones (genistein and daidzein) against homocysteine-mediated neurotoxicity in SH-SY5Y human neuroblastoma cells. The treatment of cells with either 17β-estradiol or isoflavones significantly protected the cells against homocysteine-mediated apoptosis. Isoflavones repressed homocysteine-mediated ER stress, reflected in the reduced expression of the immunoglobin heavy chain-binding protein mRNA, spliced X-box-protein-1 mRNA and the phosphorylated form of eukaryotic translation initiation factor 2α protein. Homocysteine caused significant increases in intracellular S-adenosylhomocysteine (SAH) and DNA damage. Isoflavones significantly alleviated DNA damage, but did not change SAH levels. Furthermore, the treatment of cells with isoflavones significantly reduced the microtubule-associated protein tau hyperphosphorylation by inactivating glycogen synthase kinase-3β and activating serine/threonine-protein phosphatase 2A. These results clearly demonstrate that isoflavones alleviate the ER stress- and DNA damage-mediated neurodegeneration caused by homocysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso ADC, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 98:6923–6928

    Article  CAS  PubMed  Google Scholar 

  • Althausen S, Paschen W (2000) Homocysteine-induced changes in mRNA levels of genes coding for cytoplasmic- and endoplasmic reticulum-resident stress proteins in neuronal cell cultures. Brain Res Mol Brain Res 84:32–40

    Article  CAS  PubMed  Google Scholar 

  • Bingham S, Atkinson C, Liggins J, Bluck L, Coward A (1998) Phyto-oestrogens: where are we now? Br J Nutr 79:393–406

    Article  CAS  PubMed  Google Scholar 

  • Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA 94:3290–3295

    Article  CAS  PubMed  Google Scholar 

  • Bottiglieri T (1990) Isocratic high-performance liquid chromatographic analysis of S-adenosylmethionine and S-adenosylhomocysteine in animal tissues: the effect of exposure to nitrous oxide. Biomed Chromatogr 4:239–241

    Article  CAS  PubMed  Google Scholar 

  • Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13:363–373

    Article  CAS  PubMed  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96

    Article  CAS  PubMed  Google Scholar 

  • Cardona-Gomez P, Perez M, Avila J, Garcia-Segura LM, Wandosell F (2004) Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus. Mol Cell Neurosci 25:363–373

    Article  CAS  PubMed  Google Scholar 

  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-Adenosylmethionine and methylation. FASEB J 10:471–480

    CAS  PubMed  Google Scholar 

  • Day JK, Bauer AM, desBordes C, Zhuang Y, Kim B-E, Newton LG, Nehra V, Forsee KM, MacDonald RS, Besch-Williford C, Huang TH-M, Lubahn DB (2002) Genistein alters methylation patterns in mice. J Nutr 132:2419S–2423S

    CAS  PubMed  Google Scholar 

  • Dolinoy D, Weidman J, Waterland R, Jirtle R (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114:567–572

    Article  CAS  PubMed  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104:13056–13061

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 45:629–656

    Article  CAS  PubMed  Google Scholar 

  • Fuchs D, Erhard P, Rimbach G, Daniel H, Wenzel U (2005) Genistein blocks homocysteine-induced alterations in the proteome of human endothelial cells. Proteomics 5:2808–2818

    Article  CAS  PubMed  Google Scholar 

  • Fuso A, Cavallaro RA, Zampelli A, D’Anselmi F, Piscopo P, Confaloni A, Scarpa S (2007) γ-Secretase is differentially modulated by alterations of homocysteine cycle in neuroblastoma and glioblastoma cells. J Alzheimers Dis 11:275–290

    CAS  PubMed  Google Scholar 

  • Goodenough S, Schleusner D, Pietrzik C, Skutella T, Behl C (2005) Glycogen synthase kinase 3beta links neuroprotection by 17beta-estradiol to key Alzheimer processes. Neuroscience 132:581–589

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Bosagna C, Sabat P, Valdovinos F, Valladares L, Clark S (2008) Epigenetic and phenotypic changes result from a continuous pre and post natal dietary exposure to phytoestrogens in an experimental population of mice. BMC Physiol 8:17

    Article  PubMed  CAS  Google Scholar 

  • Henderson VW (1997) Estrogen, cognition, and a woman’s risk of Alzheimer’s disease. Am J Med 103:11S–18S

    Article  CAS  PubMed  Google Scholar 

  • Ho KP, Li L, Zhao L, Qian ZM (2003) Genistein protects primary cortical neurons from iron-induced lipid peroxidation. Mol Cell Biochem 247:219–222

    Article  CAS  PubMed  Google Scholar 

  • Hong T, Nakagawa T, Pan W, Kim MY, Lee Kraus W, Ikehara T, Yasui K, Aihara H, Takebe M, Muramatsu M, Ito T (2004) Isoflavones stimulate estrogen receptor-mediated core histone acetylation. Biochem Biophys Res Commun 317:259–264

    Article  CAS  PubMed  Google Scholar 

  • James SJ, Melnyk S, Pogribna M, Pogribny IP, Caudill MA (2002) Elevation in S-Adenosylhomocysteine and DNA hypomethylation: potential epigenetic mechanism for homocysteine-related pathology. J Nutr 132:2361S–2366S

    CAS  PubMed  Google Scholar 

  • Katayama T, Imaizumi K, Manabe T, Hitomi J, Kudo T, Tohyama M (2004) Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat 28:67–78

    Article  CAS  PubMed  Google Scholar 

  • Kaufman R (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398

    CAS  PubMed  Google Scholar 

  • Kennedy BP, Bottiglieri T, Arning E, Ziegler MG, Hansen LA, Masliah E (2004) Elevated S-adenosylhomocysteine in Alzheimer brain: influence on methyltransferases and cognitive function. J Neural Transm 111:547–567

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Xia H, Li L, Gewin J (2000) Attenuation of neurodegeneration-relevant modifications of brain proteins by dietary soy. BioFactors 12:243–250

    Article  CAS  PubMed  Google Scholar 

  • Kim H-J, Cho H-K, Kwon YH (2008) Synergistic induction of ER stress by homocysteine and β-amyloid in SH-SY5Y cells. J Nutr Biochem 19:754–761

    Article  CAS  PubMed  Google Scholar 

  • Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926

    CAS  PubMed  Google Scholar 

  • Kruman II, Kumaravel TS, Lohani A, Pedersen WA, Cutler RG, Kruman Y, Haughey N, Lee J, Evans M, Mattson MP (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 22:1752–1762

    CAS  PubMed  Google Scholar 

  • Lee Y, Lee H, Sohn H (2005) Soy isoflavones and cognitive function. J Nutr Biochem 16:641–649

    Article  CAS  PubMed  Google Scholar 

  • Leung H, Yung L, Poon C, Shi G, Lu A, Leung L (2009) Genistein protects against polycyclic aromatic hydrocarbon-induced oxidative DNA damage in non-cancerous breast cells MCF-10A. Br J Nutr 101:257–262

    Article  CAS  PubMed  Google Scholar 

  • Linford N, Dorsa D (2002) 17β-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids 67:1029–1040

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Iqbal K, Grundke-Iqbal I, Gong C-X (2002) Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3β. FEBS Lett 530:209–214

    Article  CAS  PubMed  Google Scholar 

  • Luchsinger J, Mayeux R (2004) Dietary factors and Alzheimer’s disease. Lancet Neurol 3:579–587

    Article  PubMed  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Chan SL (2001) Dysregulation of cellular calcium homeostasis in Alzheimer’s disease: bad genes and bad habits. J Mol Neurosci 17:205–224

    Article  CAS  PubMed  Google Scholar 

  • Mattson M, Shea T (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146

    Article  CAS  PubMed  Google Scholar 

  • Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  CAS  PubMed  Google Scholar 

  • Outinen PA, Sood SK, Liaw PC, Sarge KD, Maeda N, Hirsh J, Ribau J, Podor TJ, Weitz JI, Austin RC (1998) Characterization of the stress-inducing effects of homocysteine. Biochem J 332:213–221

    CAS  PubMed  Google Scholar 

  • Park Y-J, Jang Y-m, Kwon YH (2009) Isoflavones prevent endoplasmic reticulum stress-mediated neuronal degeneration by inhibiting tau hyperphosphorylaltion in SH-SY5Y cells. J Med Food 12:528–535

    Article  CAS  PubMed  Google Scholar 

  • Picerno I, Chirico C, Condello S, Visalli G, Ferlazzo N, Gorgone G, Caccamo D, Ientile R (2007) Homocysteine induces DNA damage and alterations in proliferative capacity of T-lymphocytes: a model for immunosenescence? Biogerontology 8:111–119

    Article  CAS  PubMed  Google Scholar 

  • Raschke M, Rowland IR, Magee PJ, Pool-Zobel BL (2006) Genistein protects prostate cells against hydrogen peroxide-induced DNA damage and induces expression of genes involved in the defence against oxidative stress. Carcinogenesis 27:2322–2330

    Article  CAS  PubMed  Google Scholar 

  • Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA (2003) Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett 541:145–148

    Article  CAS  PubMed  Google Scholar 

  • Sontag E, Nunbhakdi-Craig V, Sontag J-M, Diaz-Arrastia R, Ogris E, Dayal S, Lentz SR, Arning E, Bottiglieri T (2007) Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci 27:2751–2759

    Article  CAS  PubMed  Google Scholar 

  • Vulliet R, Halloran SM, Braun RK, Smith AJ, Lee G (1992) Proline-directed phosphorylation of human Tau protein. J Biol Chem 267:22570–22574

    CAS  PubMed  Google Scholar 

  • Wang KKW (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26

    Article  PubMed  Google Scholar 

  • Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR, Austin RC (2001) Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 107:1263–1273

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    Article  CAS  PubMed  Google Scholar 

  • Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275:29318–29323

    Article  CAS  PubMed  Google Scholar 

  • Yoon SY, Choi HI, Choi JE, Sul CA, Choi JM, Kim DH (2007) Methotrexate decreases PP2A methylation and increases tau phosphorylation in neuron. Biochem Biophys Res Commun 363:811–816

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Bhavnani B (2006) Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci 7:49

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, Kitajima S (2001) Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 276:35867–35874

    Article  CAS  PubMed  Google Scholar 

  • Zhang C-E, Tian Q, Wei W, Peng J-H, Liu G-P, Zhou X-W, Wang Q, Wang D-W, Wang J-Z (2008) Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol Aging 29:1654–1665

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Chen Q, Brinton RD (2002) Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp Biol Med (Maywood) 227:509–519

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Korea Research Foundation (KRF-2006-331-C00311), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hye Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, YJ., Jang, Y. & Kwon, Y.H. Protective effect of isoflavones against homocysteine-mediated neuronal degeneration in SH-SY5Y cells. Amino Acids 39, 785–794 (2010). https://doi.org/10.1007/s00726-010-0523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0523-5

Keywords

Navigation