Skip to main content
Log in

Identification of genes regulated by ammonium availability in the roots of maritime pine trees

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Conifers have a preference for ammonium over nitrate as the main inorganic nitrogen source. However, it is unknown how changes in nitrogen nutrition may affect transcription profiles. In this study, microarray analysis and suppressive subtraction hybridization were used to identify differentially expressed genes in the roots of maritime pine exposed to changes in ammonium availability. A total of 225 unigenes that were differentially regulated by changes in ammonium nutrition were identified. Most of the unigenes were classified into seven functional categories by comparison with sequences deposited in the databases. A significant proportion of these genes were encoded for ammonium-regulated proteins of unknown functions. The differential expression of selected candidate genes was further validated in plants subjected to ammonium excess/deficiency. The transcript levels of representative genes were compared in maritime pine roots, 1, 15 and 35 days after nutritional treatments. Gene expression patterns suggest the existence of potential links between ammonium-responsive genes and genes involved in amino acid metabolism, particularly in asparagine biosynthesis and utilization. Functional analyses and exploration of the natural variability in maritime pine populations for a number of relevant genes are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarnes H, Eriksen AB, Petersen D, Rise F (2007) Accumulation of ammonium in Norway spruce (Picea abies) seedlings measured by in vivo 14N-NMR. J Exp Bot 58:92–934

    Article  Google Scholar 

  • Alonso P, Cortizo M, Cantón FR, Fernández B, Rodríguez A, Cánovas FM, Ordás R (2007) Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea L. cotyledons by subtractive PCR. Tree Physiol 27:1721–1730

    CAS  PubMed  Google Scholar 

  • Cañas RA, de la Torre F, Cánovas FM, Cantón FR (2006) High levels of asparagine synthetase in hypocotyls of pine seedlings reveal an essential role of the enzyme in re-allocation of seed-stored nitrogen. Planta 224:83–95

    Article  PubMed  Google Scholar 

  • Cañas RA, Cánovas FM, Cantón FR (2007) Coordination of PsAS1 and PsASPG expression controls timing of reallocated N utilization in hypocotyls of pine seedlings. Planta 225:1205–1219

    Article  PubMed  Google Scholar 

  • Cañas RA, Villalobos DP, Díaz-Moreno SM, Cánovas FM, Cantón FR (2008) Molecular and functional analyses support a role of ornithine- and [delta]-aminotransferase in the provision of glutamate for glutamine biosynthesis during pine germination. Plant Physiol 148:77–88

    Article  PubMed  Google Scholar 

  • Cánovas FM, Cantón FR, García-Gutiérrez A, Gallardo F, Crespillo R (1998) Molecular physiology of glutamine and glutamate biosynthesis in developing seedlings of conifers. Physiol Plant 103:287–294

    Article  Google Scholar 

  • Cánovas FM, Avila C, Cantón FR, Cañas R, de la Torre F (2007) Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot 58:2307–2318

    Article  PubMed  Google Scholar 

  • Cantón FR, Le Provost G, García V, Barré A, Frigerio J-M, Fevereiro P, Avila C, Mouret J-F, de Daruvar A, Cánovas FM, Plomion C (2003) Transcriptome analysis of wood formation in maritime pine. In: Ritter E, Espinel S, Barredo Y et al (eds) Sustainable forestry. Woods products and biotecnology. DFA-AFA Press, Vitoria-Gasteiz, pp 333–348

    Google Scholar 

  • Cruz C, Biol AFM, Dominguez-Valdivia MD, Aparicio-Tejo PM, Lamfus C, Martins-Louçao MA (2006) How does glutamine synthetase activity determine plant tolerance to ammonium? Planta 223:1068–1080

    Article  CAS  PubMed  Google Scholar 

  • de la Torre F, Suárez MF, De Santis L, Cánovas FM (2007) The family of aspartate aminotransferase in conifers. Biochemical analysis of a prokaryotic-type enzyme from maritime pine. Tree Physiol 27:1283–1291

    PubMed  Google Scholar 

  • Ekramoddoullah AKM, Liu J-J, Zamani A (2006) Cloning and characterization of a putative antifungal peptide gene (PM-AMP1) in Pinus monticola. Phytopathol 96:164–170

    Article  CAS  Google Scholar 

  • El Omari R, Rueda-López M, Avila C, Crespillo R, Nhiri M, Cánovas FM (2010) Ammonium tolerance and the regulation of two cytosolic glutamine synthetases in the roots of Sorghum. Funct Plant Biol 37:55–63

    Article  CAS  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Physiol Plant Mol Biol 53:203–224

    CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez RA, Gifford ML, Poultney C, Wang RC, Shasha DE, Coruzzi GM, Crawford NM (2007) Insights into the genomic nitrate response using genetics and the Sungear Software system. J Exp Bot 58:2359–2367

    Article  PubMed  Google Scholar 

  • Herrera-Rodríguez MB, Maldonado JM, Pérez-Vicente R (2004) Light and metabolic regulation of HAS1, HAS1.1 and HAS2, three asparagine synthetase genes in Helianthus annuus. Plant Physiol Biochem 42:511–518

    Article  PubMed  Google Scholar 

  • Herrera-Rodríguez MB, Pérez-Vicente R, Maldonado JM (2007) Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses. Plant Physiol Biochem 45:33–38

    Article  PubMed  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59–61

    Article  CAS  Google Scholar 

  • Lea PJ, Morot-Gaudry JF (2001) Plant Nitrogen. Springer, Berlin, p 407

    Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry R, Halford NG (2007) Asparagine in plants. Ann App Biol 150:1–26

    Article  CAS  Google Scholar 

  • Liao Z, Chen M, Guo L, Gong Y, Tang F, Sun X, Tang K (2004) Rapid isolation of high-quality total RNA from Taxus and Ginkgo. Prep Biochem Biotechnol 34:209–214

    Article  CAS  PubMed  Google Scholar 

  • Liu J-J, Ekramoddoullah AKM (2006) The family 10 of plant pathogenesis-related proteins: their structure, regulation, and function in response to biotic and abiotic stresses. Physiol Mol Plant Pathol 68: 3:13

    Google Scholar 

  • Martín-Requena V, Muñoz-Merida A, Claros MG, Trelles O (2009) PreP + 07: improvements of a user friendly tool to preprocess and analyse microarray data. BMC Bioinformatics 12:10–16

    Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306

    Article  CAS  PubMed  Google Scholar 

  • Ohlünd J, Näsholm T (2001) Growth of conifer seedlings on organic and inorganic nitrogen sources. Tree Physiol 21:1319–1326

    PubMed  Google Scholar 

  • Ohlünd J, Näsholm T (2004) Regulation of organic and inorganic nitrogen uptake in Scots pine (Pinus sylvestris) seedlings. Tree Physiol 24:1397–1402

    PubMed  Google Scholar 

  • Olea F, Pérez-García A, Avila C, Cantón FR, Cazorla F, Rivera E, Cánovas FM, de Vicente A (2004) Up-regulation and localization of asparagine synthetase in tomato leaves infected by the bacterial pathogen Pseudomonas syringae. Plant Cell Physiol 45:770–780

    Article  CAS  PubMed  Google Scholar 

  • Pascual MB, Molina-Rueda JJ, Cánovas FM, Gallardo F (2008) Spatial distribution of cytosolic NADP+-isocitrate dehydrogenase in pine embryos and seedlings. Tree Physiol 28:1773–1782

    CAS  PubMed  Google Scholar 

  • Pilot G, Stransky H, Bushey DF, Pratelli R, Ludewig U, Wingate VPM, Frommer WB (2004) Overexpression of glutamine dumper1 leads to hypersecretion of glutamine from hydathodes of Arabidopsis leaves. Plant Cell 16:1827–1840

    Article  CAS  PubMed  Google Scholar 

  • Ruffel S, Freixes S, Balzergue S, Tillard P, Jeudy C, Martin-Magniette ML, van der Merwe MJ, Kakar K, Gouzy J, Fernie AR, Udvardi M, Salon C, Gojon A, Lepetit M (2008) Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Physiol 146:2020–2035

    Article  CAS  PubMed  Google Scholar 

  • Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45

    Article  CAS  PubMed  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  CAS  PubMed  Google Scholar 

  • Snowden KC, Gardner RC (1993) Five genes induced by aluminum in wheat (Triticum aestivum) roots. Plant Physiol 103:855–861

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Takahashi H, Sugai M, Iwai H, Kohno T, Sekimizu K, Natori S, Shimada I (2004) Channel-forming membrane permeabilization by an antibacterial protein, sapecin: determination of membrane buried and oligomerization surfaces by NMR. J Biol Chem 279:4981–4987

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced Web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:34.1–34.11

    Article  Google Scholar 

  • Wang H, Ng TB (2000) Ginkgobilin, a novel antifungal protein from Ginkgo biloba seeds with sequence similarity to embryo-abundant protein. Biochem Biophys Res Commun 279:407–411

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  CAS  PubMed  Google Scholar 

  • Wong H-K, Chan H-K, Coruzzi GM, Lam H-M (2004) Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. Plant Physiol 134:332–338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish Ministry of Science and Innovation (BIO2006-06216 and BIO2009-07940) and by Junta de Andalucía (AGR-663 and funds to BIO-114 research group). JC was supported by a predoctoral fellowship from Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco M. Cánovas.

Electronic Supplementary material

Table 1

Differentially expressed genes identified by microarray analysis microarray (XLS 24 kb)

Table 2

Genes with putative functions identified in the SSH libraries (XLS 151 kb)

Table 3

Sequences of oligonucleotides used for qPCR analysis of gene expression (XLS 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canales, J., Flores-Monterrosso, A., Rueda-López, M. et al. Identification of genes regulated by ammonium availability in the roots of maritime pine trees. Amino Acids 39, 991–1001 (2010). https://doi.org/10.1007/s00726-010-0483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0483-9

Keywords

Navigation