Skip to main content
Log in

Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Inhibition of polyamine biosynthesis and/or the perturbation of polyamine functionality have been exploited with success against parasitic diseases such as Trypanosoma infections. However, when the classical polyamine biosynthesis inhibitor, α-difluoromethylornithine, is used against the human malaria parasite, Plasmodium falciparum, it results in only a cytostatic growth arrest. Polyamine metabolism in this parasite has unique properties not shared by any other organism. These include the bifunctional arrangement of the catalytic decarboxylases and an apparent absence of the typical polyamine interconversion pathways implying different mechanisms for the regulation of polyamine homeostasis that includes the uptake of exogenous polyamines at least in vitro. These properties make polyamine metabolism an enticing drug target in P. falciparum provided that the physiological and functional consequences of polyamine metabolism perturbation are understood. This review highlights our current understanding of the biological consequences of inhibition of the biosynthetic enzymes in the polyamine pathway in P. falciparum as revealed by several global analytical approaches. Ultimately, the evidence suggests that polyamine metabolism in P. falciparum is a validated drug target worth exploiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADA:

Adenosine deaminase

AdoDATO:

S-Adenosyl-1,8-diamino-3-thiooctane

AdoHC:

S-Adenosylhomocysteine

AdoMet:

S-Adenosylmethionine

AdoMetDC:

S-Adenosylmethionine decarboxylase

AdoMetSyn:

S-Adenosylmethionine synthase

AHC:

S-Adenosyl homocysteinase

APA:

3-Aminooxy-1-aminopropane

APE:

5-Amino-1-pentene

CHA:

Cyclohexylamine

CQ:

Chloroquine

dcAdoMet:

Decarboxylated S-adenosylmethionine

DFMO:

α-Difluoromethylornithine

eIF5A:

Eukaryotic translation initiation factor 5A

EMP:

Erythrocyte plasma membrane

HC:

Homocysteine

HS:

Homospermidine

LDC:

Lysine decarboxylase

4-MCHA:

trans-1,4-Methylcyclohexylamine

MDL73811/AbeAdo:

5′-{[(Z)-4-Amino-2-butenyl]methylamino}-5′-deoxyadenosine

MDL27695:

N,N′-Bis{3-(phenylmethyl)aminolpropyl}-1,7-diaminoheptane

MetSyn:

Methionine synthase

MGBG:

Methylglyoxal bis(guanylhydrazone)

MTA:

5′-Methylthioadenosine

MTI:

5′-Methylthioinosine

MTRP:

5′-Methylthio-d-ribose-1-phosphate

OAT:

Ornithine aminotransferase

ODC:

Ornithine decarboxylase

PNP:

Uridine phosphorylase

PPM:

Parasite plasma membrane

PVM:

Parasite vacuolar membrane

SpdSyn:

Spermidine synthase

References

  • Assaraf YG, Golenser J, Spira DT, Bachrach U (1984) Polyamine levels and the activity of their biosynthetic enzymes in human erythrocytes infected with the malarial parasite, Plasmodium falciparum. Biochem J 222:815–819

    CAS  PubMed  Google Scholar 

  • Assaraf YG, Golenser J, Spira DT, Bachrach U (1986) Plasmodium falciparum: synchronization of cultures with dl-alpha-difluoromethylornithine, an inhibitor of polyamine biosynthesis. Exp Parasitol 61:229–235

    Article  CAS  PubMed  Google Scholar 

  • Assaraf YG, Golenser J, Spira DT, Messer G, Bachrach U (1987) Cytostatic effect of dl-alpha-difluoromethylornithine against Plasmodium falciparum and its reversal by diamines and spermidine. Parasitol Res 73:313–318

    Article  CAS  PubMed  Google Scholar 

  • Bacchi CJ, Nathan HC, Yarlett N, Goldber B, McCann PP, Bitonti AJ, Sjoerdsma A (1992) Cure of murine Trypanosoma brucei rhodesiense infections with an S-adenosylmethionine decarboxylase inhibitor. Antimicrob Agents Chemother 36:2736–2740

    CAS  PubMed  Google Scholar 

  • Becker JVW, Mtwisha L, Crampton B, Stoychev S, van Brummelen AC, Reeksting SB, Louw AI, Birkholtz L, Mancama D (2009) Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite levels. BMC Genom (submitted)

  • Birkholtz L, Joubert F, Neitz AWH, Louw AI (2003) Comparative properties of a three-dimensional model of Plasmodium falciparum ornithine decarboxylase. Proteins: Str Funct Genet 50:464–473

    Article  CAS  Google Scholar 

  • Birkholtz L, Wrenger C, Joubert F, Wells GA, Walter RD, Louw AI (2004) Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase of Plasmodium falciparum modulate catalytic activities and domain interactions. Biochem J 377:439–448

    Article  CAS  PubMed  Google Scholar 

  • Birkholtz L, van Brummelen AC, Clark K, Niemand J, Marechal E, Llinas M, Louw AI (2008) Exploring functional genomics for drug target and therapeutic discovery in Plasmodia. Acta Trop 105:113–123

    Article  CAS  PubMed  Google Scholar 

  • Bitonti AJ, McCann PP, Sjoerdsma A (1987) Plasmodium falciparum and Plasmodium berghei: effects of ornithine decarboxylase inhibitors on erythrocytic schizogony. Exp Parasitol 64:237–243

    Article  CAS  PubMed  Google Scholar 

  • Bitonti AJ, Dumont JA, Bush TL, Edwards ML, Stemerick DM, McCann PP, Sjoerdsma A (1989) Bis(benzyl)polyamine analogs inhibit the growth of chloroquine-resistant human malaria parasites (Plasmodium falciparum) in vitro and in combination with alpha-difluoromethylornithine cure marine malaria. Proc Natl Acad Sci USA 86:651–655

    Article  CAS  PubMed  Google Scholar 

  • Burger PB, Birkholtz L, Joubert F, Haider N, Walter RD, Louw AI (2007) Structural and mechanistic insights into the action of Plasmodium falciparum spermidine synthase. Bioorg Med Chem 15:1628–1637

    Article  CAS  PubMed  Google Scholar 

  • Byers TL, Bush T, McCann PP, Bitonti AJ (1991) Antitrypanosomal effects of polyamine biosynthesis inhibitors correlate with increases in Trypanosoma brucei brucei S-adenosyl-l-methionine. Biochem J 274:527–533

    CAS  PubMed  Google Scholar 

  • Casero RA, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390

    Article  CAS  PubMed  Google Scholar 

  • Clark K, Dhoogra M, Louw AI, Birkholtz L (2008) Transcriptional responses of Plasmodium falciparum to alpha-difluoromethylornithine-induced polyamine depletion. Biol Chem 389:111–125

    Article  CAS  PubMed  Google Scholar 

  • Das Gupta R, Krause-Ihle T, Bergmann B, Müller IB, Khomutov A, Müller S, Walter RD, Lüersen K (2005) 3-Aminooxy-1-aminopropane and derivatives have an antiproliferative effect on cultured Plasmodium falciparum by decreasing intracellular polyamine concentrations. Antimicrob Agents Chemo 49(7):2857–2864

    Article  CAS  Google Scholar 

  • Das B, Gupta R, Madhubala R (1995) Combined action of inhibitors of polyamine biosynthetic pathway with a known antimalarial drug, chloroquine, on Plasmodium falciparum. Pharm Res 31:189–193

    Article  CAS  Google Scholar 

  • de Beer TAP, Wells GA, Burger PB, Joubert F, Marechal E, Birkholtz L, Louw AI (2009) Antimalarial drug discovery: in silico structural biology and rational drug design. Inf Disorders: Drug Targets 9:304–318

    Google Scholar 

  • Dufe VT, Qiu W, Muller IB, Hui R, Walter RD, Al-Karadaghi S (2007) Crystal structure of Plasmodium falciparum spermidine synthase in complex with the substrate decarboxylated S-adenosylmethionine and the potent inhibitors 4MCHA and AdoDATO. J Mol Biol 373:167–177

    Article  CAS  PubMed  Google Scholar 

  • Gamarnik A, Frydman R (1991) Cadaverine, an essential diamine for the normal root development of germinating soybean (Glycine max) seeds. Plant Physiol 97:778–785

    Article  CAS  PubMed  Google Scholar 

  • Geall AJ, Baughed JA, Loyevsky M, Gordeuk VR, Al-Abed Y, Bucala R (2004) Targeting malaria with polyamines. Bioconjug Chem 15:1161–1165

    Article  CAS  PubMed  Google Scholar 

  • Gillet JM, Charlier J, Boné G, Mulamba PL (1983) Plasmodium berghei: inhibition of the sporogonous cycle by α-difluoromethylornithine. Exp Parasitol 56:190–193

    Article  CAS  PubMed  Google Scholar 

  • Grillo MA, Colombatto S (2008) S-Adenosylmethionine and its products. Amino Acids 34:187–193

    Article  CAS  PubMed  Google Scholar 

  • Gugliucci A (2004) Polyamines as clinical laboratory tools. Clin Chim Acta 344:23–35

    Article  CAS  PubMed  Google Scholar 

  • Haider N, Eschbach M, de Souza Dias S, Gilberger T, Walter RD, Lüersen K (2005) The spermidine synthase of the malaria parasite Plasmodium falciparum: molecular and biochemical characterisation of the polyamine synthesis enzyme. Mol Biochem Parasitol 142:224–236

    Article  CAS  PubMed  Google Scholar 

  • Heby O, Roberts SC, Ullman B (2003) Polyamine biosynthetic enzymes as drug targets in parasitic protozoa. Biochem Soc Trans 31:415–419

    Article  CAS  PubMed  Google Scholar 

  • Heby O, Persson L, Rentala M (2007) Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease and leishmaniasis. Amino Acids 33:359–366

    Article  CAS  PubMed  Google Scholar 

  • Heidrich JE, Hunsaker LA, Vader Jagt DL (1983) Polyamine synthesis in the erythrocytic forms of the human malarial parasite Plasmodium falciparum. IRCS Med Sci 11:929–930

    CAS  Google Scholar 

  • Hollingdale MR, McCann PP, Sjoerdsma A (1985) Plasmodium berghei: inhibitors of ornithine decarboxylase block exoerythrocytic schizogony. Exp Parasitol 60:111–117

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Roberts SC, Jardim A, Carter NS, Shih S, Ariyanayagam M, Fairlamb AH, Ullman B (1999) Ornithine decarboxylase gene deletion mutants of Leishmania donovani. J Biol Chem 274(6):3781–3788

    Article  CAS  PubMed  Google Scholar 

  • Kaiser AE, Gottwald AM, Wiersch CS, Lindenthal B, Maier WA, Seitz HM (2001) Effect of drugs inhibiting spermidine biosynthesis and metabolism on the in vitro development of Plasmodium falciparum. Parasitol Res 87:963–972

    CAS  PubMed  Google Scholar 

  • Kaiser A, Gottwald A, Maier W, Seitz HM (2003) Targeting enzymes involved in spermidine metabolism of parasitic protozoa—a possible new strategy for antiparasitic treatment. Parasitol Res 91:508–516

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Choi S, Lee J (2006) Lysine decarboxylase expression by Vibrio vulnificus is induced by SoxR in response to superoxide stress. J Bacteriol 188:8586–8592

    Article  CAS  PubMed  Google Scholar 

  • Klenke B, Barret MP, Brun R, Gilbert IH (2003) Antiplasmodial activity of a series of 1,3,5-triazine substituted polyamines. J Antimicrob Chemother 52:290–293

    Article  CAS  PubMed  Google Scholar 

  • Krause T, Luersen K, Wrenger C, Gilberger T, Muller S, Walter RD (2000) The ornithine decarboxylase domain of the bifunctional ornithine decarboxylase/S-adenosylmethionine decarboxylase of Plasmodium falciparum: recombinant expression and catalytic properties of two different constructs. Biochem J 352:287–292

    Article  CAS  PubMed  Google Scholar 

  • Labadie GR, Choi S, Avery MA (2004) Diamine derivatives with antiparasitic activities. Bioorg Med Chem Lett 14:615–619

    Article  CAS  PubMed  Google Scholar 

  • Marton LJ, Pegg AE (1995) Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35:55–91

    Article  CAS  PubMed  Google Scholar 

  • Metcalf BW, Bey P, Danzin C, Jung MJ, Casara PL, Vevert JP (1978) Catalytic irreversible inhibition of mammalian ornithine decarboxylase by substrate and product analogues. J Am Chem Soc 100:2551–2552

    Article  CAS  Google Scholar 

  • Montanez R, Sanchez-Jimenez F, Aldana-Montes JF, Medina MA (2007) Polyamines: metabolism to systems biology and beyond. Amino Acids 33:283–289

    Article  CAS  PubMed  Google Scholar 

  • Müller S, Da’daras A, Lüersen K, Wrenger C, Das Gupta R, Madhubala R, Walter RD (2000) In the human malaria parasite Plasmodium falciparum, polyamines are synthesized by a bifunctional ornithine decarboxylase, S-adenosylmethionine decarboxylase. J Biol Chem 275(11):8097–8102

    Article  PubMed  Google Scholar 

  • Müller S, Coombs GH, Walter RD (2001) Targeting polyamines of parasitic protozoa in chemotherapy. Trends Parasitol 17(5):242–249

    Article  PubMed  Google Scholar 

  • Müller S, Liebau E, Walter RD, Kraut-Siegel RL (2003) Thiol-based redox metabolism of protozoan parasites. Trends Parasitol 19:320–328

    Article  PubMed  Google Scholar 

  • Müller IB, Walter RD, Wrenger C (2005) Structural metal dependency of the arginase from the human malaria parasite Plasmodium falciparum. Biochem J 386:117–126

    Google Scholar 

  • Müller IB, Das Gupta R, Luersen K, Wrenger C, Walter RD (2008) Assessing the polyamine metabolism of Plasmodium falciparum as chemotherapeutic target. Mol Biochem Parasitol 160:1–7

    Article  PubMed  Google Scholar 

  • Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, Llinas M (2009) Host–parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 5:191–199

    Article  CAS  PubMed  Google Scholar 

  • Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem 139:161–169

    Article  CAS  PubMed  Google Scholar 

  • Reeksting SB (2009) Metabolomic analyses of the malaria parasite after inhibition of polyamine biosynthesis. University of Pretoria, Pretoria

    Google Scholar 

  • Seiler N (2003a) Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 1. Selective enzyme inhibitors. Curr Drug Targets 4:537–564

    Article  CAS  PubMed  Google Scholar 

  • Seiler N (2003b) Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 2. Structural analogues and derivatives. Curr Drug Targets 4:565–585

    Article  CAS  PubMed  Google Scholar 

  • Seiler N (2004) Catabolism of polyamines. Amino Acids 26:217–233

    CAS  PubMed  Google Scholar 

  • Singh S, Puri SK, Singh SK, Srivastava R, Gupta RC, Pandey VC (1997) Characterization of simian malaria parasite (Plasmodium knowlesi)-induced putrescine transport in Rhesus monkey erythrocytes. J Biol Chem 272(21):13506–13511

    Article  CAS  PubMed  Google Scholar 

  • Sturm N, Jortzik E, Mailu BM, Koncarevic S, Deponte M, Forchhammer K, Rahlfs S, Becker K (2009) Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLoS Pathog 5:e1000383

    Article  PubMed  Google Scholar 

  • Teng R, Junankar PR, Bubb WA, Rae C, Mercier P, Kirk K (2008) Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by 1H NMR spectroscopy. NMR Biomed 22:1–11

    Google Scholar 

  • Ueda M, Masu Y, Ando A, Maeda H, Del Monte M, Uyama M, Ito S (1998) Prevention of ornithine cytotoxicity by proline in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 39:820–827

    CAS  PubMed  Google Scholar 

  • van Brummelen AC (2009) Functional genomics analysis of the effects of co-inhibition of the malarial S-adenosylmethionine decarboxylase/ornithine decarboxylase. University of Pretoria, Pretoria

    Google Scholar 

  • van Brummelen AC, Olszewski K, Wilinski D, Llinas M, Louw A, Birkholtz L (2009) Co-inhibition of the Plasmodium falciparum S-adenosylmethionine decarboxylase/ornithine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome and metabolome analyses. J Biol Chem 284:4635–4646

    Article  PubMed  Google Scholar 

  • Wallace H, Niiranen K (2007) Polyamine analogues—an update. Amino Acids 33:261–265

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wells GA, Birkholtz L, Joubert F, Walter RD, Louw AI (2006) Novel properties of malarial S-adenosylmethionine decarboxylase as revealed by structural modelling. J Mol Graph Model 24:307–318

    Article  CAS  PubMed  Google Scholar 

  • Wrenger C, Lüersen K, Krause T, Müller S, Walter RD (2001) The Plasmodium falciparum bifunctional ornithine decarboxylase, S-adenosyl-l-methionine decarboxylase, enables a well balanced polyamine synthesis without domain–domain interaction. J Biol Chem 276(32):29651–29656

    Article  CAS  PubMed  Google Scholar 

  • Wright PS, Byers TL, Cross-doersen DE, McCann PP, Bitonti AJ (1991) Irreversible inhibition of S-adenosylmethionine decarboxylase in Plasmodium falciparum-infected erythrocytes: growth inhibition in vitro. Biochem Pharmacol 41(11):1713–1718

    Article  CAS  PubMed  Google Scholar 

  • Yeh I, Hanekamp T, Tsoka S, Karp PD, Altman RB (2004) Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res 14:917–924

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of South Africa (NRF: Grant FA2004051300055, FA2006040400011 and FA2007050300003), the University of Pretoria and the Department of Science and Technology of South Africa for funding the South African Malaria Initiative of which LB and AIL are members. KC, TvB, SS and MW were recipients of prestigious bursaries from the NRF, South Africa. JN hold bursaries from the Carl and Emily Fuchs Foundation as well as the Ernst and Ethel Eriksen Trust. Any opinion, findings and conclusions or recommendations expressed in this paper are those of the author(s) and therefore the NRF does not accept any liability in regard hereto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Birkholtz.

Additional information

Authors are listed alphabetically except for the last two authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, K., Niemand, J., Reeksting, S. et al. Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum . Amino Acids 38, 633–644 (2010). https://doi.org/10.1007/s00726-009-0424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0424-7

Keywords

Navigation