Skip to main content
Log in

Activated polyamine catabolism leads to low cholesterol levels by enhancing bile acid synthesis

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N1-acetyltransferase (SSAT) have significantly reduced plasma total cholesterol levels. In our study, we show that low cholesterol levels were attributable to enhanced bile acid synthesis in combination with reduced cholesterol absorption. Hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme catalyzing the conversion of cholesterol to bile acids, plays an important role in the removal of excess cholesterol from the body. We suggest that by reducing activity of Akt activated polyamine catabolism increased the stability and activity of peroxisome proliferator-activated receptor γ co-activator 1α, the critical activator of CYP7A1. This is supported by our finding that the treatment with SSAT activator, N 1,N 11-diethylnorspermine, reduced significantly the amount of phosphorylated (active) Akt in HepG2 cells. In summary, activated-polyamine catabolism is a novel mechanism to regulate bile acid synthesis. Therefore, polyamine catabolism could be a potential therapeutic target to control hepatic CYP7A1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HMGCR:

3-Hydroxy-3-methylglutaryl-CoA reductase

NPC1L1:

Niemann–Pick C1-like 1 protein

CYP7A1:

Cholesterol 7α-hydroxylase

PGC-1α:

Peroxisome proliferator-activated receptor γ co-activator 1α

SSAT:

Spermidine/spermine N¹-acetyltransferase

HDL:

High-density lipoprotein

GLC:

Gas–liquid chromatography

AMPK:

5′-AMP-activated protein kinase

HNF-4α:

Hepatocyte nuclear factor 4α

LXRα:

Liver X receptor α

FXR:

Farnesoid X receptor

SIRT1:

Sirtuin 1

MAPK:

Mitogen-activated protein kinase

PRMT1:

Protein arginine methyltransferase 1

PI3K:

Phosphatidylinositol 3-kinase

GSK-3β:

Glycogen synthase kinase 3β

PPARδ:

Peroxisome proliferator-activated receptor δ

DENSPM:

N1, N11-diethylnorspermine

NTCP:

Na+-taurocholate cotransporting polypeptide

OATP1:

Na+-independent organic anion transporting polypeptide

BSEP:

Bile salt export pump

FDFT1:

Squalene synthase

DHCR7:

7-Dehydrocholesterol reductase

SREBP:

Sterol regulatory element binding protein

ABCA1:

ATP binding cassette protein A1

ACAT2:

Acyl CoA: cholesterol acyltransferase 2

SR-BI:

Class B type 1 scavenger receptor

ABCG5:

ATP binding cassette protein G5

ABCG8:

ATP binding cassette protein G8

PXR:

Pregnane X receptor

CAR:

Constitutive androstane receptor

PPARα:

Peroxisome proliferator-activated receptor α

HDAC7:

Histone deacetylase 7

ASBT:

Apical Na+-dependent bile acid transporter

I-BABP:

Ileal bile acid binding protein

LDL:

Low-density lipoprotein

VLDL:

Very-low-density lipoprotein

IDL:

Intermediate-density lipoprotein

References

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:6541–6551

    CAS  PubMed  Google Scholar 

  • Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP (2004) Niemann–Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–1204

    Article  CAS  PubMed  Google Scholar 

  • Bernacki RJ, Oberman EJ, Seweryniak KE, Atwood A, Bergeron RJ, Porter CW (1995) Preclinical antitumor efficacy of the polyamine analogue N1,N11-diethylnorspermine administered by multiple injection or continuous infusion. Clin Cancer Res 1:847–857

    CAS  PubMed  Google Scholar 

  • Bhalla S, Ozalp C, Fang S, Xiang L, Kemper JK (2004) Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha. Functional implications in hepatic cholesterol and glucose metabolism. J Biol Chem 279:45139–45147

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar D, Soran H, Durrington PN (2008) Hypercholesterolaemia and its management. BMJ 337:a993

    Article  PubMed  CAS  Google Scholar 

  • Cheema SK, Agellon LB (2000) The murine and human cholesterol 7alpha-hydroxylase gene promoters are differentially responsive to regulation by fatty acids mediated via peroxisome proliferator-activated receptor alpha. J Biol Chem 275:12530–12536

    Article  CAS  PubMed  Google Scholar 

  • Chiang JY, Kimmel R, Stroup D (2001) Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha). Gene 262:257–265

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate–phenol–chloroform extraction. Anal Biochem 167:156–159

    Article  Google Scholar 

  • De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M (2003) Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem 278:39124–39132

    Article  PubMed  CAS  Google Scholar 

  • Debruyne PR, Bruyneel EA, Li X, Zimber A, Gespach C, Mareel MM (2001) The role of bile acids in carcinogenesis. Mutat Res 480–481:359–369

    PubMed  Google Scholar 

  • Dietschy JM, Turley SD, Spady DK (1993) Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 34:1637–1659

    CAS  PubMed  Google Scholar 

  • Fuchs M (2003) Bile acid regulation of hepatic physiology: III. Regulation of bile acid synthesis: past progress and future challenges. Am J Physiol Gastrointest Liver Physiol 284:G551–G557

    CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343(6257):425–430

    Article  CAS  PubMed  Google Scholar 

  • Grundy SM, Ahrens EH Jr, Davignon J (1969) The interaction of cholesterol absorption and cholesterol synthesis in man. J Lipid Res 10:304–315

    CAS  PubMed  Google Scholar 

  • Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811

    Article  CAS  PubMed  Google Scholar 

  • Hancock CR, Han DH, Chen M, Terada S, Yasuda T, Wright DC, Holloszy JO (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA 105:7815–7820

    Article  CAS  PubMed  Google Scholar 

  • Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183

    Article  CAS  PubMed  Google Scholar 

  • Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang DY, Mansfield TA, Kliewer SA, Goodwin B, Jones SA (2003) Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 17:1581–1591

    Article  CAS  PubMed  Google Scholar 

  • Hondares E, Pineda-Torra I, Iglesias R, Staels B, Villarroya F, Giralt M (2007) PPARdelta, but not PPARalpha, activates PGC-1alpha gene transcription in muscle. Biochem Biophys Res Commun 354:1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022

    Article  PubMed  CAS  Google Scholar 

  • Jänne J, Alhonen L, Keinänen TA, Pietilä M, Uimari A, Pirinen E, Hyvönen MT, Järvinen A (2005) Animal disease models generated by genetic engineering of polyamine metabolism. J Cell Mol Med 9:865–882

    Article  PubMed  Google Scholar 

  • Jell J, Merali S, Hensen ML, Mazurchuk R, Spernyak JA, Diegelman P, Kisiel ND, Barrero C, Deeb KK, Alhonen L, Patel MS, Porter CW (2007) Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol Chem 282:8404–8413

    Article  CAS  PubMed  Google Scholar 

  • Jiang R, Choi W, Hu L, Gerner EW, Hamilton SR, Zhang W (2007) Activation of polyamine catabolism by N 1,N 11-diethylnorspermine alters the cellular localization of mTOR and downregulates mTOR protein level in glioblastoma cells. Cancer Biol Ther 6:1644–1648

    Article  CAS  PubMed  Google Scholar 

  • Jung D, Kullak-Ublick GA (2003) Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression. Hepatology 37:622–631

    Article  CAS  PubMed  Google Scholar 

  • Laganiere J, Tremblay GB, Dufour CR, Giroux S, Rousseau F, Giguere V (2004) A polymorphic autoregulatory hormone response element in the human estrogen-related receptor alpha (ERRalpha) promoter dictates peroxisome proliferator-activated receptor gamma coactivator-1alpha control of ERRalpha expression. J Biol Chem 279:18504–18510

    Article  CAS  PubMed  Google Scholar 

  • Lam NV, Chen W, Suruga K, Nishimura N, Goda T, Yokogoshi H (2006) Enhancing effect of taurine on CYP7A1 mRNA expression in HepG2 cells. Amino Acids 30:43–48

    Article  CAS  PubMed  Google Scholar 

  • Leon C, Hill JS, Wasan KM (2005) Potential role of acyl-coenzyme A:cholesterol transferase (ACAT) inhibitors as hypolipidemic and antiatherosclerosis drugs. Pharm Res 22:1578–1588

    Article  CAS  PubMed  Google Scholar 

  • Li X, Monks B, Ge Q, Birnbaum MJ (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447:1012–1016

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  • Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507–515

    Article  CAS  PubMed  Google Scholar 

  • Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Fang S, Bae Y, Kemper JK (2006) Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha. J Biol Chem 281:14537–14546

    Article  CAS  PubMed  Google Scholar 

  • Miettinen TA (1982) Gas–liquid chromatographic determination of fecal neutral sterols using a capillary column. Clin Chim Acta 124:245–248

    Article  CAS  PubMed  Google Scholar 

  • Miettinen TA (1988) Cholesterol metabolism during ketoconazole treatment in man. J Lipid Res 29:43–51

    CAS  PubMed  Google Scholar 

  • Miettinen TA, Koivisto P (1983) Non-cholesterol sterols and bile acid production in hypercholesterolaemic patients with ileal bypass. In: Paumgartner GA, Stiehl AW, Gerok W (eds) Bile acids and cholesterol in health and disease. MTP press, Lancaster, pp 183–187

    Google Scholar 

  • Mitro N, Godio C, De Fabiani E, Scotti E, Galmozzi A, Gilardi F, Caruso D, Vigil Chacon AB, Crestani M (2007) Insights in the regulation of cholesterol 7alpha-hydroxylase gene reveal a target for modulating bile acid synthesis. Hepatology 46:885–897

    Article  CAS  PubMed  Google Scholar 

  • Miyake JH, Doung XD, Strauss W, Moore GL, Castellani LW, Curtiss LK, Taylor JM, Davis RA (2001) Increased production of apolipoprotein B-containing lipoproteins in the absence of hyperlipidemia in transgenic mice expressing cholesterol 7alpha-hydroxylase. J Biol Chem 276:23304–23311

    Article  CAS  PubMed  Google Scholar 

  • Miyake JH, Duong-Polk XT, Taylor JM, Du EZ, Castellani LW, Lusis AJ, Davis RA (2002) Transgenic expression of cholesterol-7-alpha-hydroxylase prevents atherosclerosis in C57BL/6 J mice. Arterioscler Thromb Vasc Biol 22:121–126

    Article  CAS  PubMed  Google Scholar 

  • Montanez R, Sanchez-Jimenez F, Aldana-Montes JF, Medina MA (2007) Polyamines: metabolism to systems biology and beyond. Amino Acids 33:283–289

    Article  CAS  PubMed  Google Scholar 

  • Nair SK, Verma A, Thomas TJ, Chou TC, Gallo MA, Shirahata A, Thomas T (2007) Synergistic apoptosis of MCF-7 breast cancer cells by 2-methoxyestradiol and bis(ethyl)norspermine. Cancer Lett 250:311–322

    Article  CAS  PubMed  Google Scholar 

  • Olson BL, Hock MB, Ekholm-Reed S, Wohlschlegel JA, Dev KK, Kralli A, Reed SI (2008) SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev 22:252–264

    Article  CAS  PubMed  Google Scholar 

  • Pietilä M, Alhonen L, Halmekyto M, Kanter P, Jänne J, Porter CW (1997) Activation of polyamine catabolism profoundly alters tissue polyamine pools and affects hair growth and female fertility in transgenic mice overexpressing spermidine/spermine N 1-acetyltransferase. J Biol Chem 272:18746–18751

    Article  PubMed  Google Scholar 

  • Pirinen E, Kuulasmaa T, Pietilä M, Heikkinen S, Tusa M, Itkonen P, Boman S, Skommer J, Virkamäki A, Hohtola E, Kettunen M, Fatrai S, Kansanen E, Koota S, Niiranen K, Parkkinen J, Levonen AL, Ylä-Herttuala S, Hiltunen JK, Alhonen L, Smith U, Jänne J, Laakso M (2007) Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Mol Cell Biol 27:4953–4967

    Article  CAS  PubMed  Google Scholar 

  • Ponugoti B, Fang S, Kemper JK (2007) Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c. Mol Endocrinol 21:2698–2712

    Article  CAS  PubMed  Google Scholar 

  • Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM (2001) Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 8:971–982

    Article  CAS  PubMed  Google Scholar 

  • Ratliff EP, Gutierrez A, Davis RA (2006) Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia. J Lipid Res 47:1513–1520

    Article  CAS  PubMed  Google Scholar 

  • Reddy BS, Watanabe K, Weisburger JH, Wynder EL (1977) Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res 37:3238–3242

    CAS  PubMed  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  CAS  PubMed  Google Scholar 

  • Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582:46–53

    Article  CAS  PubMed  Google Scholar 

  • Russell DW (1999) Nuclear orphan receptors control cholesterol catabolism. Cell 97:539–542

    Article  CAS  PubMed  Google Scholar 

  • Russell DW, Setchell KD (1992) Bile acid biosynthesis. Biochemistry 31:4737–4749

    Article  CAS  PubMed  Google Scholar 

  • Shin DJ, Campos JA, Gil G, Osborne TF (2003) PGC-1alpha activates CYP7A1 and bile acid biosynthesis. J Biol Chem 278:50047–50052

    Article  CAS  PubMed  Google Scholar 

  • Spady DK, Cuthbert JA, Willard MN, Meidell RS (1995) Adenovirus-mediated transfer of a gene encoding cholesterol 7 alpha-hydroxylase into hamsters increases hepatic enzyme activity and reduces plasma total and low density lipoprotein cholesterol. J Clin Invest 96:700–709

    Article  CAS  PubMed  Google Scholar 

  • Stieger B, Meier Y, Meier PJ (2007) The bile salt export pump. Pflugers Arch 453:611–620

    Article  CAS  PubMed  Google Scholar 

  • Teyssier C, Ma H, Emter R, Kralli A, Stallcup MR (2005) Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev 19:1466–1473

    Article  CAS  PubMed  Google Scholar 

  • Tucker JM, Murphy JT, Kisiel N, Diegelman P, Barbour KW, Davis C, Medda M, Alhonen L, Jänne J, Kramer DL, Porter CW, Berger FG (2005) Potent modulation of intestinal tumorigenesis in Apcmin/+ mice by the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase. Cancer Res 65:5390–5398

    Article  CAS  PubMed  Google Scholar 

  • van der Veen JN, Kruit JK, Havinga R, Baller JF, Chimini G, Lestavel S, Staels B, Groot PH, Groen AK, Kuipers F (2005) Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res 46:526–534

    Article  PubMed  CAS  Google Scholar 

  • Wang DQ, Carey MC (2003) Measurement of intestinal cholesterol absorption by plasma and fecal dual-isotope ratio, mass balance, and lymph fistula methods in the mouse: an analysis of direct versus indirect methodologies. J Lipid Res 44:1042–1059

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Tan Y, Costa RH, Holterman AX (2004) In vivo regulation of murine CYP7A1 by HNF-6: a novel mechanism for diminished CYP7A1 expression in biliary obstruction. Hepatology 40:600–608

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank warmly Leena Kaipiainen, Sisko Juutinen, Anne Karppinen, Arja Korhonen, Marita Heikkinen, Teija Oinonen, Eveliina Kiriloff, and Riikka Frilander-Keinänen for technical assistance. We also thank Professor Johan Auwerx (Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland) for comments and critical reading of the manuscript. This research was supported by grants to E. Pirinen from Finnish Cultural Foundation of Northern Savo, Finnish Cultural Foundation, Research and Science Foundation of Farmos, Foundation of Kuopio University and Finnish Diabetes Research Foundation, to J. Jänne from the Academy of Finland and to M. Laakso from the Academy of Finland and the European Union (LSHM-CT-2004-512013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Laakso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirinen, E., Gylling, H., Itkonen, P. et al. Activated polyamine catabolism leads to low cholesterol levels by enhancing bile acid synthesis. Amino Acids 38, 549–560 (2010). https://doi.org/10.1007/s00726-009-0416-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0416-7

Keywords

Navigation