Skip to main content
Log in

LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

LyeTx I, an antimicrobial peptide isolated from the venom of Lycosa erythrognatha, known as wolf spider, has been synthesised and its structural profile studied by using the CD and NMR techniques. LyeTx I has shown to be active against bacteria (Escherichia coli and Staphylococcus aureus) and fungi (Candida krusei and Cryptococcus neoformans) and able to alter the permeabilisation of l-α-phosphatidylcholine-liposomes (POPC) in a dose-dependent manner. In POPC containing cholesterol or ergosterol, permeabilisation has either decreased about five times or remained unchanged, respectively. These results, along with the observed low haemolytic activity, indicated that antimicrobial membranes, rather than vertebrate membranes seem to be the preferential targets. However, the complexity of biological membranes compared to liposomes must be taken in account. Besides, other membrane components, such as proteins and even specific lipids, cannot be discarded to be important to the preferential action of the LyeTx I to the tested microorganisms. The secondary structure of LyeTx I shows a small random-coil region at the N-terminus followed by an α-helix that reached the amidated C-terminus, which might favour the peptide-membrane interaction. The high activity against bacteria together with the moderate activity against fungi and the low haemolytic activity have indicated LyeTx I as a good prototype for developing new antibiotic peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adao R, Seixas R, Gomes P, Pessoa JC, Bastos M (2008) Membrane structure and interactions of a short Lycotoxin I analogue. J Pept Sci 14:528–534

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (2004) Membrane-lytic peptides. Crit Rev Plant Sci 23:271–292

    Article  CAS  Google Scholar 

  • Boman HG, Hultmark D (1987) Cell-free immunity in insects. Annu Rev Microbiol 41:103–126

    Article  CAS  PubMed  Google Scholar 

  • Budnik BA, Olsen JV, Egorov TA, Anisimova VE, Galkina TG, Musolyamov AK, Grishin EV, Zubarev RA (2004) De novo sequencing of antimicrobial peptides isolated from the venom glands of the wolf spider Lycosa singoriensis. J Mass Spectrom 39:193–201

    Article  CAS  PubMed  Google Scholar 

  • Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS (2005) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard (M27-A2), 2nd edn. Clinical and Laboratory Standards Institute, Wayne

  • Clinical and Laboratory Standards Institute (2007) Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement. CLSI document M100-S17. Clinical and Laboratory Standards Institute, Wayne

  • Frezard F, Santaella C, Vierling P, Riess JG (1994) Permeability and stability in buffer and in human serum of fluorinated phospholipid-based liposomes. Biochim Biophys Acta 1192:61–70

    Article  CAS  PubMed  Google Scholar 

  • Giacometti A, Cirioni O, Barchiesi F, Del Prete MS, Scalise G (1999) Antimicrobial activity of polycationic peptides. Peptides 20:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Ishibashi J, Hara S, Yamakawa M (2002) Solution structure of moricin, an antibacterial peptide, isolated from the silkworm Bombyx mori. FEBS Lett 518:33–38

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Ledesma B, Recio I, Amigo R (2008) β-Lactoglobulin as source of bioactive peptides. Amino Acids 35:257–265

    Article  PubMed  Google Scholar 

  • Hyberts SG, Goldberg MS, Havel TF, Wagner G (1992) The solution structure of eglin C based on measurements of many NOEs and coupling constants and its comparison with X-Ray structures. Protein Sci 1:136–151

    Article  Google Scholar 

  • Kastin AJ (2006) Handbook of biologically active peptides. Academic, Amsterdam

    Google Scholar 

  • Kuhn-Nentwig L (2009) Cytolytic and antimicrobial peptides in the venom of scorpions and spiders. In: De Lima ME, Pimenta AMC, Martin-Eauclaire MF, Zingali R, Rochat H(eds) Animal toxins: state of the art. Perspectives in health and biotechnology, 1st edn edn. Editora UFMG, Belo Horizonte, pp 153–172

    Google Scholar 

  • Laskowski RA, Rullmann JA, MacArthur MW, Kaptein R, Thornton JM (1996) AUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  PubMed  Google Scholar 

  • Liu ZH, Qian W, Li J, Zhang Y, Liang S (2009) Biochemical and pharmacological study of venom of the wolf spider Lycosa singoriensis. J Venom Anim Toxins incl Trop Dis 15:79–92

    Article  CAS  Google Scholar 

  • Martins RM, Sforca ML, Amino R, Juliano MA, Oyama S Jr, Juliano L, Pertinhez TA, Spisni A, Schenkman S (2006) Lytic activity and structural differences of amphipathic peptides derived from trialysin. Biochemistry 45:1765–1774

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Sugishita K, Fujii N, Miyajima K (1995) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34:3423–3429

    Article  CAS  PubMed  Google Scholar 

  • Mor A, Nicolas P (1994) Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem 219:145–154

    Article  CAS  PubMed  Google Scholar 

  • Park JM, Jung JE, Lee BJ (1994) Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun 205:948–954

    Article  CAS  PubMed  Google Scholar 

  • Pimenta AM, Rates B, Bloch C Jr, Gomes PC, Santoro MM, de Lima ME, Richardson M, Cordeiro Mdo N (2005) Electrospray ionization quadrupole time-of-flight and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometric analyses to solve micro-heterogeneity in post-translationally modified peptides from Phoneutria nigriventer (Aranea, Ctenidae) venom. Rapid Commun Mass Spectrom 19:31–37

    Article  CAS  PubMed  Google Scholar 

  • Prates MV, Sforca ML, Regis WC, Leite JR, Silva LP, Pertinhez TA, Araujo AL, Azevedo RB, Spisni A, Bloch C Jr (2004) The NMR-derived solution structure of a new cationic antimicrobial peptide from the skin secretion of the anuran Hyla punctata. J Biol Chem 279:13018–13026

    Article  CAS  PubMed  Google Scholar 

  • Sanderson JM (2005) Peptide–lipid interactions: insights and perspectives. Org Biomol Chem 3:201–212

    Article  CAS  PubMed  Google Scholar 

  • Sforça ML, Oyama S Jr, Canduri F, Lorenzi CCB, Pertinhez TA, Konno K, Palma Souza BM, MS Ruggiero, Neto J, Azevedo WF Jr, Spisni A (2004) How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp. Biochemistry 43:5608–5617

    Article  PubMed  Google Scholar 

  • Syvitski RT, Burton I, Mattatall NR, Douglas SE, Jakeman DL (2005) Structural characterization of the antimicrobial peptide pleurocidin from winter flounder. Biochemistry 44:7282–7293

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Takahashi H, Sugai, M, Iwai H, Kohno T, Sekimizu K, Natori S, Shimada I (2004) Channel-forming membrane permeabilization by an antibacterial protein, sapecin: determination of membrane-buried and oligomerization surfaces by NMR. J Biol Chem 279:4981–4987

    Article  CAS  PubMed  Google Scholar 

  • Ulmschneider MB, Sansom MS (2001) Amino acid distributions in integral membrane protein structures. Biochim Biophys Acta 1512:1–14

    Article  CAS  PubMed  Google Scholar 

  • Verly RM, de Moraes CM, Resende JM, Aisenbrey C, Bemquerer MP, Piló-Veloso D, Valente AP, Almeida FC, Bechinger B (2009) Structure and membrane interactions of the antibiotic peptide dermadistinctin K by multidimensional solution and oriented 15N and 31P solid-state NMR spectroscopy. Biophys J 96:2194–2203

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Ji Y, Qu X (1989) Purification and characterization of an antibacterial peptide from venom of Lycosa singoriensis. Acta Zool Sin 35:300–305

    CAS  Google Scholar 

  • Yan L, Adams ME (1998) Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J Biol Chem 273:2059–2066

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by FAPEMIG, MCT-FINEP, CAPES, CNPq and INCTTOX-Fapesp. Authors would like to thank Dr C. Bloch Jr for his stimulating discussions de novo sequencing in mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. de Lima.

Additional information

A.M.C. Pimenta and M.E. de Lima have contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 1020 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, D.M., Verly, R.M., Piló-Veloso, D. et al. LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha . Amino Acids 39, 135–144 (2010). https://doi.org/10.1007/s00726-009-0385-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0385-x

Keywords

Navigation