Skip to main content

Advertisement

Log in

Enriching the viral–host interactomes with interactions mediated by SH3 domains

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Protein–protein interactions play an essential role in the regulation of most cellular processes. The process of viral infection is no exception and many viral pathogenic strategies involve targeting and perturbing host–protein interactions. The characterization of the host protein subnetworks disturbed by invading viruses is a major goal of viral research and may contribute to reveal fundamental biological mechanisms and to identify new therapeutic strategies. To assist in this approach, we have developed a database, VirusMINT, which stores in a structured format most of the published interactions between viral and host proteome. Although SH3 are the most ubiquitous and abundant class of protein binding modules, VirusMINT contains only a few interactions mediated by this domain class. To overcome this limitation, we have applied the whole interactome scanning experiment approach to identify interactions between 15 human SH3 domains and viral proline-rich peptides of two oncogenic viruses, human papillomavirus type 16 and human adenovirus A type 12. This approach identifies 114 new potential interactions between the human SH3 domains and proline-rich regions of the two viral proteomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adzhubei AA, Sternberg MJ (1993) Left-handed polyproline II helices commonly occur in globular proteins. J Mol Biol 229:472–493

    Article  CAS  PubMed  Google Scholar 

  • Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J (1999) Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol 19:2338–2350

    CAS  PubMed  Google Scholar 

  • Briggs SD, Sharkey M, Stevenson M, Smithgall TE (1997) SH3-mediated Hck tyrosine kinase activation and fibroblast transformation by the Nef protein of HIV-1. J Biol Chem 272:17899–17902

    Article  CAS  PubMed  Google Scholar 

  • Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35:D572–D574

    Article  CAS  PubMed  Google Scholar 

  • Chatr-aryamontri A, Ceol A, Peluso D, Nardozza A, Panni S, Sacco F, Tinti M, Smolyar A, Castagnoli L, Vidal M, Cusick ME, Cesareni G (2009) VirusMINT: a viral protein interaction database. Nucleic Acids Res 37:D669–D673

    Article  CAS  PubMed  Google Scholar 

  • Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20:426–427

    Article  CAS  PubMed  Google Scholar 

  • Donaldson JC, Dempsey PJ, Reddy S, Bouton AH, Coffey RJ, Hanks SK (2000) Crk-associated substrate p130(Cas) interacts with nephrocystin and both proteins localize to cell–cell contacts of polarized epithelial cells. Exp Cell Res 256:168–178

    Article  CAS  PubMed  Google Scholar 

  • Dyson N, Guida P, Munger K, Harlow E (1992) Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J Virol 66:6893–6902

    CAS  PubMed  Google Scholar 

  • Feng S, Chen JK, Yu H, Simon JA, Schreiber SL (1994) Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3–ligand interactions. Science 266:1241–1247

    Article  CAS  PubMed  Google Scholar 

  • Hassaine G, Courcoul M, Bessou G, Barthalay Y, Picard C, Olive D, Collette Y, Vigne R, Decroly E (2001) The tyrosine kinase Hck is an inhibitor of HIV-1 replication counteracted by the viral vif protein. J Biol Chem 276:16885–16893

    Article  CAS  PubMed  Google Scholar 

  • Hiyoshi M, Suzu S, Yoshidomi Y, Hassan R, Harada H, Sakashita N, Akari H, Motoyoshi K, Okada S (2008) Interaction between Hck and HIV-1 Nef negatively regulates cell surface expression of M-CSF receptor. Blood 111:243–250

    Article  CAS  PubMed  Google Scholar 

  • Korkaya H, Jameel S, Gupta D, Tyagi S, Kumar R, Zafrullah M, Mazumdar M, Lal SK, Xiaofang L, Sehgal D, Das SR, Sahal D (2001) The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK. J Biol Chem 276:42389–42400

    Article  CAS  PubMed  Google Scholar 

  • Kramer A, Keitel T, Winkler K, Stocklein W, Hohne W, Schneider-Mergener J (1997) Molecular basis for the binding promiscuity of an anti-p24 (HIV-1) monoclonal antibody. Cell 91:799–809

    Article  CAS  PubMed  Google Scholar 

  • Landgraf C, Panni S, Montecchi-Palazzi L, Castagnoli L, Schneider-Mergener J, Volkmer-Engert R, Cesareni G (2004) Protein interaction networks by proteome peptide scanning. PLoS Biol 2:E14

    Article  PubMed  Google Scholar 

  • Latreille M, Larose L (2006) Nck in a complex containing the catalytic subunit of protein phosphatase 1 regulates eukaryotic initiation factor 2 alpha signaling and cell survival to endoplasmic reticulum stress. J Biol Chem 281:26633–26644

    Article  CAS  PubMed  Google Scholar 

  • Lazzi S, Bellan C, De Falco G, Cinti C, Ferrari F, Nyongo A, Claudio PP, Tosi GM, Vatti R, Gloghini A, Carbone A, Giordano A, Leoncini L, Tosi P (2002) Expression of RB2/p130 tumor-suppressor gene in AIDS-related non-Hodgkin’s lymphomas: implications for disease pathogenesis. Hum Pathol 33:723–731

    Article  CAS  PubMed  Google Scholar 

  • Lechner MS, Laimins LA (1994) Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol 68:4262–4273

    CAS  PubMed  Google Scholar 

  • Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351:453–456

    Article  CAS  PubMed  Google Scholar 

  • Li SS (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J (1992) The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70:431–442

    Article  CAS  PubMed  Google Scholar 

  • Macias MJ, Hyvonen M, Baraldi E, Schultz J, Sudol M, Saraste M, Oschkinat H (1996) Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382:646–649

    Article  CAS  PubMed  Google Scholar 

  • Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114:1253–1263

    CAS  PubMed  Google Scholar 

  • Mittelstaedt T, Schoch S (2007) Structure and evolution of RIM-BP genes: identification of a novel family member. Gene 403:70–79

    Article  CAS  PubMed  Google Scholar 

  • Modregger J, Ritter B, Witter B, Paulsson M, Plomann M (2000) All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci 113 Pt 24:4511–4521

    Google Scholar 

  • Musacchio A, Noble M, Pauptit R, Wierenga R, Saraste M (1992) Crystal structure of a Src-homology 3 (SH3) domain. Nature 359:851–855

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa K, Freund C, Li J, Wagner G, Reinherz EL (1998) Identification of a proline-binding motif regulating CD2-triggered T lymphocyte activation. Proc Natl Acad Sci USA 95:14897–14902

    Article  CAS  PubMed  Google Scholar 

  • Pornillos O, Alam SL, Rich RL, Myszka DG, Davis DR, Sundquist WI (2002) Structure and functional interactions of the Tsg101 UEV domain. EMBO J 21:2397–2406

    Article  CAS  PubMed  Google Scholar 

  • Reinhard M, Giehl K, Abel K, Haffner C, Jarchau T, Hoppe V, Jockusch BM, Walter U (1995) The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J 14:1583–1589

    CAS  PubMed  Google Scholar 

  • Renkema GH, Manninen A, Saksela K (2001) Human immunodeficiency virus type 1 Nef selectively associates with a catalytically active subpopulation of p21-activated kinase 2 (PAK2) independently of PAK2 binding to Nck or beta-PIX. J Virol 75:2154–2160

    Article  CAS  PubMed  Google Scholar 

  • Ribon V, Printen JA, Hoffman NG, Kay BK, Saltiel AR (1998) A novel, multifunctional c-Cbl binding protein in insulin receptor signaling in 3T3–L1 adipocytes. Mol Cell Biol 18:872–879

    CAS  PubMed  Google Scholar 

  • Schutt CE, Myslik JC, Rozycki MD, Goonesekere NC, Lindberg U (1993) The structure of crystalline profilin-beta-actin. Nature 365:810–816

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  Google Scholar 

  • Shelton H, Harris M (2008) Hepatitis C virus NS5A protein binds the SH3 domain of the Fyn tyrosine kinase with high-affinity: mutagenic analysis of residues within the SH3 domain that contribute to the interaction. Virol J 5:24

    Article  PubMed  Google Scholar 

  • Soubeyran P, Barac A, Szymkiewicz I, Dikic I (2003) Cbl-ArgBP2 complex mediates ubiquitination and degradation of c-Abl. Biochem J 370:29–34

    Article  CAS  PubMed  Google Scholar 

  • Stapley BJ, Creamer TP (1999) A survey of left-handed polyproline II helices. Protein Sci 8:587–595

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Trible RP, Emert-Sedlak L, Smithgall TE (2006) HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. J Biol Chem 281:27029–27038

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  CAS  PubMed  Google Scholar 

  • Williamson MP (1994) The structure and function of proline-rich regions in proteins. Biochem J 297(Pt 2):249–260

    CAS  PubMed  Google Scholar 

  • Yu H, Rosen MK, Shin TB, Seidel-Dugan C, Brugge JS, Schreiber SL (1992) Solution structure of the SH3 domain of Src and identification of its ligand-binding site. Science 258:1665–1668

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL (1994) Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76:933–945

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3:e59

    Article  PubMed  Google Scholar 

  • Yuan ZQ, Kim D, Kaneko S, Sussman M, Bokoch GM, Kruh GD, Nicosia SV, Testa JR, Cheng JQ (2005) ArgBP2gamma interacts with Akt and p21-activated kinase-1 and promotes cell survival. J Biol Chem 280:21483–21490

    Article  CAS  PubMed  Google Scholar 

  • Zarrinpar A, Bhattacharyya RP, Lim WA (2003) The structure and function of proline recognition domains. Sci STKE 2003:RE8

Download references

Acknowledgments

This work was supported by a grant from AIRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Cesareni.

Additional information

M. Carducci and L. Licata should be regarded as joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

. Regular expressions mapping the viral proline-rich peptides used in the screening. The “x” correspond to any amino acid residues. (XLS 30 kb)

Supplementary Table 2

. Viral proline-rich peptides. 46 viral peptides synthesized on cellulose membrane, belonging to Human Adenovirus A type 12 and Human Papilloma type 16 proteome (Column 1), viral protein name (column 2), Uniprot accession number (column 3), peptide sequences (column 4) and peptide ranges (column 5) are shown. (XLS 34 kb)

Supplementary Table 3

. Host-virus domain-peptide interactions. The 213 physical interaction found in the this screening are listed. Column 1 and 2 show the name of Human Protein (HP) and Viral Protein (VP). The following columns contain Uniprot accession number, viral peptides sequences, human SH3 domain ranges and viral pro-rich peptide ranges. (XLS 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carducci, M., Licata, L., Peluso, D. et al. Enriching the viral–host interactomes with interactions mediated by SH3 domains. Amino Acids 38, 1541–1547 (2010). https://doi.org/10.1007/s00726-009-0375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0375-z

Keywords

Navigation