Skip to main content
Log in

N-Methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors involved in the induction of sedative effects under an acute stress in neonatal chicks

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

An Erratum to this article was published on 31 March 2009

Abstract

Glutamate, an excitatory amino acid, acts at several glutamate receptor subtypes. Recently, we reported that central administration of glutathione induced hypnosis under stressful conditions in neonatal chicks. Glutathione appears to bind to the N-methyl-d-aspartate (NMDA) receptor. To clarify the involvement of each glutamate receptor subtype during stressful conditions, intracerebroventricular (i.c.v.) injection of several glutamate receptor agonists was given to chicks under social separation stress. Glutamate dose-dependently induced a hypnotic effect. NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate are characterized as ionotropic glutamate receptors (iGluRs). Although NMDA also induced sleep-like behavior or sedative effects, the potency of NMDA was less than that of glutamate. AMPA tended to decrease distress vocalizations induced by acute stress and brought about a sedative effect. Kainate and (S)-3, 5-dehydroxyphenylglycine, which is a metabotropic glutamate receptor agonist, had no influence on chick behavior. Thus, it is suggested that the iGluRs, NMDA and AMPA, are important in inducing hypnosis and sedation under acute stress in chicks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bandler R (1982) Induction of ‘rage’ following microinjections of glutamate into midbrain but not hypothalamus of cat. Neurosci Lett 30:183–188

    Article  PubMed  CAS  Google Scholar 

  • Bleich S, Römer K, Wiltfang J, Kornhuber J (2003) Glutamate and the glutamate receptor system: a target for drug action. Int J Geriatr Psychiatry 18:S33–S40

    Article  PubMed  Google Scholar 

  • Camargo EE (2001) Brain SPECT in neurology and psychiatry. J Nucl Med 42:611–623

    PubMed  CAS  Google Scholar 

  • Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A (1979) Autoradiographic distribution of l-proline in chicks after intracerebral injection. Physiol Behav 22:693–695

    Article  PubMed  CAS  Google Scholar 

  • De Blasi A, Conn PJ, Pin J-P, Nicoletti F (2001) Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 22:114–120

    Article  PubMed  Google Scholar 

  • Drejer J, Honor T, Schousboe A (1987) Excitatory amino acid-Induced release of 3H-GABA from cultured mouse cerebral cortex interneurons. J Neurosci 7:2910–2916

    PubMed  CAS  Google Scholar 

  • Feltenstein MW, Lambdin LC, Ganzera M, Ranjith H, Dharmaratne W, Nanayakkara NP, Khan IA, Sufka KJ (2003) Anxiolytic properties of piper methysticum extract samples and fractions in the chick social-separation-stress procedure. Phytother Res 17:210–216

    Article  PubMed  Google Scholar 

  • Gruss M, Bredenkötter M, Braun K (1999) N-methyl-d-aspartate receptor-mediated modulation of monoaminergic metabolites and amino acids in the chick forebrain: an in vivo microdialysis and electrophysiology study. J Neurobiol 40:116–135

    Article  PubMed  CAS  Google Scholar 

  • Harris KM, Miller RJ (1989) Excitatory amino acid-evoked release of [3H]GABA from hippocampal neurons in primary culture. Brain Res 482:23–33

    Article  PubMed  CAS  Google Scholar 

  • Harvey S, Phillips JG, Rees A, Hall TR (1984) Stress and adrenal function. J Exp Zool 232:633–645

    Article  PubMed  CAS  Google Scholar 

  • Henley JM, Moratallo R, Hunt SP, Barnard EA (1989) Localization and quantitative autoradiography of glutamatergic ligand binding sites in chick brain. Eur J Nurosci 1:516–523

    Article  Google Scholar 

  • Hettes SR, Heyming W, Stanley BG (2007) Stimulation of lateral hypothalamic kainate receptors selectively elicits feeding behavior. Brain Res 1184:178–185

    Article  PubMed  CAS  Google Scholar 

  • Hyson RL (1998) Activation of metabotropic glutamate receptors is necessary for transneuronal regulation of ribosomes in chick auditory neurone. Brain Res 809:214–220

    Article  PubMed  CAS  Google Scholar 

  • Janáky R, Ogita K, Pansqualotto BA, Bains JS, Oja SS, Yoneda Y, Shaw CA (1999) Glutathione and signal transduction in the mammalian CNS. J Neurochem 73:889–902

    Article  PubMed  Google Scholar 

  • Jürgens U, Richter K (1986) Glutamate-induced vocalization in the squirrel monkey. Brain Res 373:49–358

    Article  Google Scholar 

  • Kew JNC, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 179:4–29

    Article  CAS  Google Scholar 

  • Kim JW, Kirkpatrick B (1996) Social isolation in animal models of relevance to neuropsychiatric disorders. Biol Psychiatry 40:918–922

    Article  PubMed  CAS  Google Scholar 

  • Koutoku T, Takahashi H, Tomonaga S, Oikawa D, Saito S, Tachibana T, Han L, Hayamizu K, Denbow DM, Furuse M (2005) Central administration of phosphatidylserine attenuates isolation stress-induced behavior in chicks. Neurochem Int 47:183–189

    Article  PubMed  CAS  Google Scholar 

  • LeDoux J (1998) Fear and the brain: where have we been, and where are we going? Biol Psychiatry 44:1229–1238

    Article  PubMed  CAS  Google Scholar 

  • McNaughton N (1997) Congnitive dysfunction resulting from hippocampal hyperactivity––a possible cause of anxiety disorder? Pharmacol Biochem Behav 56:603–611

    Article  PubMed  CAS  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Phermacol Toxicol 29:65–402

    Google Scholar 

  • Nadler JV (2007) Encyclopedia of stress. In: Fink G, McEwen B, Ronald de Kloet E, Rubin R, Chrousos G, Steptoe A, Rose N, Craig I, Feuerstein G (eds) Excitatory amino acids, 2nd edn. Elsevier, Australia

    Google Scholar 

  • Pałucha A, Tatarczyńska E, Brański P, Szewczyk B, Wierońska JM, Kłak K, Chojnacka-Wójcik E, Nowak G, Pilc A (2004) Group III mGlu receptor agonists produce anxiolytic––and antidepressant-like effects after central administration in rats. Neuropharmacology 46:151–159

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J, Bean NJ, Bishop P, Vilberg T, Sahley T (1980) Opioid blockade and social comfort in cicks. Pharmacol Biochem Behav 13:673–683

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J, Normasell L, Herman B, Bishop P, Crepeau L (1988) The physiological control of mammalian vocalization. In: Newman JD (ed) Neural and neurochemical control of the separation distress call. Plenum Press, New York

    Google Scholar 

  • Reynolds IJ, Harris KM, Miller RJ (1989) NMDA receptor antagonists that bind to the strychnine-insensitive glycine site and inhibit NMDA-induced Ca2+ fluxes and [3H]GABA release. Eur J Pharmacol 172:9–17

    Article  PubMed  CAS  Google Scholar 

  • Sahley TL, Panksepp J, Zolovick AJ (1981) Cholinergic modulation of separation distress in the domestic chick. Eur J Pharmacol 72:261–264

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Tachibana T, Choi YH, Denbow DM, Furuse M (2005) ICV CRF and isolation stress differentially enhance plasma corticosterone concentrations in layer- and meat-type neonatal chicks. Comp Biochem Physiol A Mol Integr Physiol 141:305–309

    Article  PubMed  CAS  Google Scholar 

  • Salinska E (2006) The role of group I metabotropic glutamate receptors in memory consolidation and reconsolidation in the passive avoidance task in 1-day-old chicks. Neurochem Int 48:447–452

    PubMed  CAS  Google Scholar 

  • Scaccianoce S, Matrisciano F, Del Bianco P, Caricasole A, Gerevini VDG, Cappuccio I, Melchiorri D, Battaglia G, Nicoletti F (2003) Endogenous activation of group-II metabotropic glutamate receptors inhibits the hypothalamic-pituitary-adrenocortical axis. Neuropharmacology (Berl) 44:555–561

    Article  CAS  Google Scholar 

  • Shreve PE, Uretsky NJ (1988) AMPA, kainic acid, and N-methyl-d-Aspartic acid stimulate locomotor activity after injection into the substantia innominata/lateral preoptic area. Pharmacol Biochem Behav 34:101–106

    Article  Google Scholar 

  • Sholomenko GN, Funk GD, Steeves JD (1991) Avian locomotion activated by brainstem infusion of neurotransmitter agonists and antagonists. I. Acetylcholine, excitatory amino acids and substance P. Exp Brain Res 85:659–673

    Article  PubMed  CAS  Google Scholar 

  • Stanley BG, Ha LH, Spears LC, Dee MGII (1993) Lateral hypothalamic injections of glutamate, kainic acid, d, l-α-amino-3-hydroxy-5-methyl-isoxazole propionic acid or N-methyl-d-aspartic acid rapidly elicit intense transient eating in rats. Brain Res 613:88–95

    Article  PubMed  CAS  Google Scholar 

  • van Luijtelaar ELJM, van der Grinten CPM, Blokhuis HJ, Coenen AM (1987) Sleep in the domestic hen (Gallus domesticus). Physiol Behav 41:409–414

    Article  PubMed  Google Scholar 

  • Wang M, Yao Y, Kuang D, Hampson DR (2006) Activation of family C G-protein-coupled receptors by the tripeptide glutathione. J Bio Chem 281:8864–8870

    Article  CAS  Google Scholar 

  • Yamane H, Tomonaga S, Suenaga R, Denbow DM, Furuse M (2007) Intracerebroventricular injection of glutathione and its derivative induces sedative and hypnotic effects under an acute stress in neonatal chicks. Neurosci Lett 418:87–91

    Article  PubMed  CAS  Google Scholar 

  • Zarrindast M, Rostami P, Sadeghi-Hariri M (2001) GABA(A) but not GABA(B) receptor stimulation induces antianxiety profile in rats. Pharmacol Biochem Behav 69:9–15

    Article  PubMed  CAS  Google Scholar 

  • Zhang CG, Kim SJ (2007) Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo. Ann Nutr Metab 51:379–386

    Article  PubMed  CAS  Google Scholar 

  • Zirpel L, Lachica EA, Rubel EW (1995) Activation of a metabotropic glutamate receptor increases intracellular calcium concentrations in neurons of the avian cochlear nucleus. J Neurosci 15:214–222

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (No. 18208023). This work was also supported by a Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists to HY (20·03662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Furuse.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00726-009-0282-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamane, H., Tsuneyoshi, Y., Denbow, D.M. et al. N-Methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors involved in the induction of sedative effects under an acute stress in neonatal chicks. Amino Acids 37, 733–739 (2009). https://doi.org/10.1007/s00726-008-0203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0203-x

Keywords

Navigation