Skip to main content

Advertisement

Log in

Novel interactions of TG2 with heparan sulfate proteoglycans: reflection on physiological implications

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This mini-review brings together information from publications and recent conference proceedings that have shed light on the biological interaction between transglutaminase-2 and heparan sulphate proteoglycans. We subsequently draw hypotheses of possible implications in the wound healing process. There is a substantial overlap in the action of transglutaminase-2 and the heparan sulphate proteoglycan syndecan-4 in normal and abnormal wound repair. Our latest findings have identified syndecan-4 as a possible binding and signalling partner of fibronectin-bound TG2 and support the idea that transglutaminase-2 and syndecan-4 act in synergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akimov SS, Krylov D, Fleischman LF, Belkin AM (2000) Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 148:825–838

    Article  PubMed  CAS  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Cardin AD, Weintraub HJ (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9:21–32

    PubMed  CAS  Google Scholar 

  • Echtermeyer F, Baciu PC, Saoncella S, Ge Y, Goetinck PF (1999) Syndecan-4 core protein is sufficient for the assembly of focal adhesions and actin stress fibers. J Cell Sci 112(Pt 20):3433–3441

    PubMed  CAS  Google Scholar 

  • Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, Goetinck P (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107:R9–R14

    Article  PubMed  CAS  Google Scholar 

  • Fan G, Xiao L, Cheng L, Wang X, Sun B, Hu G (2000) Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett 467:7–11

    Article  PubMed  CAS  Google Scholar 

  • Fan Q, Shike T, Shigihara T, Tanimoto M, Gohda T, Makita Y, Wang LN, Horikoshi S, Tomino Y (2003) Gene expression profile in diabetic KK/Ta mice. Kidney Int 64:1978–1985

    Article  PubMed  CAS  Google Scholar 

  • Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534–539

    Article  PubMed  CAS  Google Scholar 

  • Filmus J, Selleck SB (2001) Glypicans: proteoglycans with a surprise. J Clin Invest 108:497–501

    PubMed  CAS  Google Scholar 

  • Fisher M, Huang L, Hau Z, Griffin M, El Nahas AM, Johnson TS (2005) Over expression of tissue transglutaminase in proximal tubular epithelial cells affects ECM accummulation in vitro. Proceedings of the 3rd World Congress in Nephrology, Singapore:W-P020031

  • Gallo R, Kim C, Kokenyesi R, Adzick NS, Bernfield M (1996) Syndecans-1 and -4 are induced during wound repair of neonatal but not fetal skin. J Invest Dermatol 107:676–683

    Article  PubMed  CAS  Google Scholar 

  • Gambetti S, Dondi A, Cervellati C, Squerzanti M, Pansini FS, Bergamini CM (2005) Interaction with heparin protects tissue transglutaminase against inactivation by heating and by proteolysis. Biochimie 87:551–555

    Article  PubMed  CAS  Google Scholar 

  • Gentile V, Saydak M, Chiocca EA, Akande O, Birckbichler PJ, Lee KN, Stein JP, Davies PJ (1991) Isolation and characterization of cDNA clones to mouse macrophage and human endothelial cell tissue transglutaminases. J Biol Chem 266:478–483

    PubMed  CAS  Google Scholar 

  • Grenard P, Bresson-Hadni S, El Alaoui S, Chevallier M, Vuitton DA, Ricard-Blum S (2001) Transglutaminase-mediated cross-linking is involved in the stabilization of extracellular matrix in human liver fibrosis. J Hepatol 35:367–375

    Article  PubMed  CAS  Google Scholar 

  • Griffin M, Smith LL, Wynne J (1979) Changes in transglutaminase activity in an experimental model of pulmonary fibrosis induced by paraquat. Br J Exp Pathol 60:653–661

    PubMed  CAS  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  PubMed  CAS  Google Scholar 

  • Hang J, Zemskov EA, Lorand L, Belkin AM (2005) Identification of a novel recognition sequence for fibronectin within the NH2-terminal beta-sandwich domain of tissue transglutaminase. J Biol Chem 280:23675–23683

    Article  PubMed  CAS  Google Scholar 

  • Haroon ZA, Hettasch JM, Lai TS, Dewhirst MW, Greenberg CS (1999) Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J 13:1787–1795

    PubMed  CAS  Google Scholar 

  • Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Tsuzuki S, Nakamura E, Kusugami K, Saito H, Muramatsu T (2000) Syndecan-4 deficiency impairs focal adhesion formation only under restricted conditions. J Biol Chem 275:5249–5252

    Article  PubMed  CAS  Google Scholar 

  • Johnson TS, Griffin M, Thomas GL, Skill J, Cox A, Yang B, Nicholas B, Birckbichler PJ, Muchaneta-Kubara C, Meguid El Nahas A (1997) The role of transglutaminase in the rat subtotal nephrectomy model of renal fibrosis. J Clin Invest 99:2950–2960

    Article  PubMed  CAS  Google Scholar 

  • Johnson TS, Skill NJ, El Nahas AM, Oldroyd SD, Thomas GL, Douthwaite JA, Haylor JL, Griffin M (1999) Transglutaminase transcription and antigen translocation in experimental renal scarring. J Am Soc Nephrol 10:2146–2157

    PubMed  CAS  Google Scholar 

  • Johnson TS, El-Koraie AF, Skill NJ, Baddour NM, El Nahas AM, Njloma M, Adam AG, Griffin M (2003) Tissue transglutaminase and the progression of human renal scarring. J Am Soc Nephrol 14:2052–2062

    Article  PubMed  CAS  Google Scholar 

  • Johnson TS, Fisher M, Haylor JL, Hau Z, Skill NJ, Jones R, Saint R, Coutts I, Vickers ME, El Nahas AM, Griffin M (2007) Transglutaminase inhibition reduces fibrosis and preserves function in experimental chronic kidney disease. J Am Soc Nephrol 18:3078–3088

    Article  PubMed  CAS  Google Scholar 

  • Li X, Verderio E, Griffin M (2002) Effects of tissue transglutaminase expression on cell stress induced by 3-nitropropionic acid (3NP). Minerva Biotechnologica 14:209

    Google Scholar 

  • Lorand L, Conrad SM (1984) Transglutaminases. Mol Cell Biochem 58:9–35

    Article  PubMed  CAS  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  PubMed  CAS  Google Scholar 

  • Mearns B, Nanda N, Michalicek J, Iismaa S, Graham R (2002) Impaired wound healing and altered fibroblast cytoskeletal dynamics in Gh knockout mice. Minerva Biotecnologica 14:218

    Google Scholar 

  • Mohammed N, Haylor J, Hau Z, El Nahas A, Griffin M, Johnson T (2006) Knockout of transglutaminase type 2 slows the development of kidney scarring in the mouse UUO model. Proceedings of the 2006 Renal Association Annual Conference, May, Harrogate, UK http://www.renal.org:RA6066

  • Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8:957–969

    Article  PubMed  CAS  Google Scholar 

  • Morita H, David G, Mizutani A, Shinzato T, Habuchi H, Maeda K, Kimata K (1994) Heparan sulfate proteoglycans in the human sclerosing and scarring kidney. Changes in heparan sulfate moiety. Contrib Nephrol 107:174–179

    PubMed  CAS  Google Scholar 

  • Oh ES, Woods A, Couchman JR (1997) Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C. J Biol Chem 272:8133–8136

    Article  PubMed  CAS  Google Scholar 

  • Parsons AC, Yosipovitch G, Sheehan DJ, Sangueza OP, Greenberg CS, Sane DC (2007) Transglutaminases: the missing link in nephrogenic systemic fibrosis. Am J Dermatopathol 29:433–436

    Article  PubMed  Google Scholar 

  • Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Qiu JF, Zhang ZQ, Chen W, Wu ZY (2007) Cystamine ameliorates liver fibrosis induced by carbon tetrachloride via inhibition of tissue transglutaminase. World J Gastroenterol 13:4328–4332

    PubMed  CAS  Google Scholar 

  • Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18:578–585

    Article  PubMed  CAS  Google Scholar 

  • Richards RJ, Masek LC, Brown RF (1991) Biochemical and cellular mechanisms of pulmonary fibrosis. Toxicol Pathol 19:526–539

    Article  PubMed  CAS  Google Scholar 

  • Sane DC, Moser TL, Parker CJ, Seiffert D, Loskutoff DJ, Greenberg CS (1990) Highly sulfated glycosaminoglycans augment the cross-linking of vitronectin by guinea pig liver transglutaminase. Functional studies of the cross-linked vitronectin multimers. J Biol Chem 265:3543–3548

    PubMed  CAS  Google Scholar 

  • Sane DC, Kontos JL, Greenberg CS (2007) Roles of transglutaminases in cardiac and vascular diseases. Front Biosci 12:2530–2545

    Article  PubMed  CAS  Google Scholar 

  • Scarpellini A, Germack R, Lortat-Jacob H, Muramatsu T, Verderio EAM (2007) Tissue transglutaminase is a heparan sulfate binding protein which cooperates with syndecan-4 in the formation of focal adhesions on fibronectin. Glycoconjugate J 24:092

    Google Scholar 

  • Scarpellini A, Germack R, Johnson T, Muamatsu T, Griffin M, Verderio E (2008) Direct association of transglutaminase-2 with syndecan-4 in the formation of RGD-independent focal adhesions on fibronectin. Biochem Soc Trans 36:P022

    Article  CAS  Google Scholar 

  • Seeberger PH, Werz DB (2007) Synthesis and medical applications of oligosaccharides. Nature 446:1046–1051

    Article  PubMed  CAS  Google Scholar 

  • Signorini M, Bortolotti F, Poltronieri L, Bergamini CM (1988) Human erythrocyte transglutaminase: purification and preliminary characterisation. Biol Chem Hoppe Seyler 369:275–281

    PubMed  CAS  Google Scholar 

  • Skill NJ, Johnson TS, Coutts IG, Saint RE, Fisher M, Huang L, El Nahas AM, Collighan RJ, Griffin M (2004) Inhibition of transglutaminase activity reduces extracellular matrix accumulation induced by high glucose levels in proximal tubular epithelial cells. J Biol Chem 279:47754–47762

    Article  PubMed  CAS  Google Scholar 

  • Small K, Feng JF, Lorenz J, Donnelly ET, Yu A, Im MJ, Dorn GW 2nd, Liggett SB (1999) Cardiac specific overexpression of transglutaminase II (G(h)) results in a unique hypertrophy phenotype independent of phospholipase C activation. J Biol Chem 274:21291–21296

    Article  PubMed  CAS  Google Scholar 

  • Stephens P, Grenard P, Aeschlimann P, Langley M, Blain E, Errington R, Kipling D, Thomas D, Aeschlimann D (2004) Crosslinking and G-protein functions of transglutaminase 2 contribute differentially to fibroblast wound healing responses. J Cell Sci 117:3389–3403

    Article  PubMed  CAS  Google Scholar 

  • Stepp MA, Gibson HE, Gala PH, Iglesia DD, Pajoohesh-Ganji A, Pal-Ghosh S, Brown M, Aquino C, Schwartz AM, Goldberger O, Hinkes MT, Bernfield M (2002) Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. J Cell Sci 115:4517–4531

    Article  PubMed  CAS  Google Scholar 

  • Telci D, Wang Z, Li X, Verderio E, Humphries MJ, Basaga H, Griffin M (2007) TG2-FN complex mediates RGD-independent cell adhesion via interacting with beta1 integrins and their cooperative receptor syndecan-4. Proceedings of the 9th International Conference on transglutaminases and protein cross -linking, Marrakech Morocco:5b

  • Verderio E, Coombes A, Jones RA, Li X, Heath D, Downes S, Griffin M (2001) Role of the cross-linking enzyme tissue transglutaminase in the biological recognition of synthetic biodegradable polymers. J Biomed Mater Res 54:294–304

    Article  PubMed  CAS  Google Scholar 

  • Verderio EA, Telci D, Okoye A, Melino G, Griffin M (2003) A novel RGD-independent cel adhesion pathway mediated by fibronectin-bound tissue transglutaminase rescues cells from anoikis. J Biol Chem 278:42604–42614

    Article  PubMed  CAS  Google Scholar 

  • Verderio EA, Johnson TS, Griffin M. (2005) Transglutaminases in wound healing and inflammation. In:Bertino JR (ed) Transglutaminases: the family of enzymes with diverse functions. Karger Group Basel

  • Verderio E, Scarpellini A, Li X, Telci D, Muramatsu T, Melino G, Jones R, Griffin M (2008) Targeted deletion of tgm-2 uncovers a role for extracellular transglutaminase-2 in RhoA downregulation during fibroblast adhesion to fibronectin. Biochem Soc Trans 36:P055

    Article  CAS  Google Scholar 

  • Wilcox-Adelman SA, Denhez F, Goetinck PF (2002) Syndecan-4 modulates focal adhesion kinase phosphorylation. J Biol Chem 277:32970–32977

    Article  PubMed  CAS  Google Scholar 

  • Yung S, Woods A, Chan TM, Davies M, Williams JD, Couchman JR (2001) Syndecan-4 up-regulation in proliferative renal disease is related to microfilament organization. FASEB J 15:1631–1633

    PubMed  CAS  Google Scholar 

  • Zehe C, Engling A, Wegehingel S, Schafer T, Nickel W (2006) Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2. Proc Natl Acad Sci U S A 103:15479–15484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. H. Lortat-Jacob and Dr. C. Laguri (Institut de Biologie Structurale CNRS-CEA, Grenoble) for useful comments on the TG2 structure and potential heparin binding sites. We are grateful to Prof. M. Griffin (Aston University, Birmingham) for generous sharing of cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. M. Verderio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verderio, E.A.M., Scarpellini, A. & Johnson, T.S. Novel interactions of TG2 with heparan sulfate proteoglycans: reflection on physiological implications. Amino Acids 36, 671–677 (2009). https://doi.org/10.1007/s00726-008-0134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0134-6

Keywords

Navigation