Skip to main content
Log in

Spin-Labeling Insights into How Chemical Fixation Impacts Glycan Organization on Cells

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

As new methods to interrogate glycan organization on cells develop, it is important to have molecular level understanding of how chemical fixation can impact results and interpretations. Site-directed spin labeling technologies are well suited to study how the spin label mobility is impacted by local environmental conditions, such as those imposed by cross-linking effects of paraformaldehyde cell fixation methods. Here, we utilize three different azide-containing sugars for metabolic glycan engineering with HeLa cells to incorporate azido glycans that are modified with a DBCO-based nitroxide moiety via click reaction. Continuous wave X-band electron paramagnetic resonance spectroscopy is employed to characterize how the chronological sequence of chemical fixation and spin labeling impacts the local mobility and accessibility of the nitroxide-labeled glycans in the glycocalyx of HeLa cells. Results demonstrate that chemical fixation with paraformaldehyde can alter local glycan mobility and care should be taken in the analysis of data in any study where chemical fixation and cellular labeling occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

ASCII files of all EPR and fluorescence data can be obtained by contacting the corresponding author directly.

References

  1. A. Varki, Biological roles of glycans. Glycobiology 27, 3–49 (2017)

    CAS  PubMed  Google Scholar 

  2. G. Wiederschain, Glycobiology and Human Diseases, Boca Taton: Taylor & Francis Group (2016)

  3. X. Zhang, F.L. Kiechle, Glycosphingolipids in health and disease. Annu. Clin. Lab. Sci. 34, 3–13 (2004)

    Google Scholar 

  4. P.M. Rudd, Disease related glycosylation changes and biomarker discovery: challenges and possibilities in an emerging field (IOS Press, Fairfax, 2009)

    Google Scholar 

  5. R.L. Schnaar, A. Suzuki, P. Stanley, Glycosphingolipids, in Essentials of Glycobiology. ed. by A. Varki et al. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor p, 2008), pp.129–142

    Google Scholar 

  6. D. Russo, S. Parashuraman, G. D’Angelo, Glycosphingolipid–protein interaction in signal transduction. Int. J. Mol. Sci. 17(1–23), 1732 (2016)

  7. C. Garcia-Ruiz, A. Morales, J.C. Fernandez-Checa, Glycosphingolipids and cell death: one aim, many ways. Apoptosis 20, 607–620 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. P.H.H. Lopez, R.L. Schnaar, Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol. 19, 549–557 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. C.-L. Schengrund, Gangliosides: glycosphingolipids essential for normal neural development and function. Trend. Biochem. Sci. 40, 397–406 (2015)

    CAS  PubMed  Google Scholar 

  10. K. Palmano et al., The role of gangliosides in neurodevelopment. Nutrients 7, 3891–3913 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. V. Gouaze-Andersson, M.C. Cabot, Glycosphingolipids and drug resistance. Biochim. Biophys. Acta 1758, 2096–2103 (2006)

    CAS  PubMed  Google Scholar 

  12. S. Groux-Degroote, Y. Guerardel, P. Delannoy, Gangliosides: structures, biosynthesis, analysis, and roles in cancer. ChemBioChem 18, 1146–1154 (2017)

    CAS  PubMed  Google Scholar 

  13. E.S. Qamsari et al., Ganglioside as a therapy target in various types of cancer. Asian Pac. J. Cancer Prev. 17, 1643–1647 (2016)

    PubMed  Google Scholar 

  14. J. Inokuchi, GM3 and diabetes. Glycoconj. J. 31, 193–197 (2014)

    CAS  PubMed  Google Scholar 

  15. R. Halmer, S. Walter, K. Faßbender, Sphingolipids: Important players in multiple sclerosis. Cell. Physiol. Biochem. 34, 111–118 (2014)

    CAS  PubMed  Google Scholar 

  16. G. van Echten-Deckert, J. Walter, Sphingolipids: critical players in Alzheimer’s disease. Prog. Lipid Res. 51, 378–393 (2012)

    PubMed  Google Scholar 

  17. T. Ariga, C. Wakade, R.K. Yu, The pathological roles of ganglioside metabolism in Alzheimer’s disease: Effects of gangliosides on neurogenesis. Int. J. Alzh. Dis. ID 193618: p. 1–14 (2011)

  18. L. Ginzburg, Y. Kacher, K.H. Futerman, The pathogenesis of glycosphingolipid storage disorders. Semin. Cell Dev. Biol. 15, 417–431 (2004)

    CAS  PubMed  Google Scholar 

  19. M.A.J. Ferguson, A.F. Williams, Cell-surface anchoring of proteins via glycosylphosphatidylinositol structure. Annu. Rev. Biochem. 57, 285–320 (1988)

    CAS  PubMed  Google Scholar 

  20. P.J. Robinson, Signal transduction by GPI-anchored membrane proteins. Cell Biol. Intern. Rep. 15, 761–767 (1991)

    CAS  Google Scholar 

  21. H. Onda et al., A Novel secreted tumor antigen with a glycosylphosphatidylinositol-anchored structure ubiquitously expressed in human cancers. Biochem. Biophys. Res. Commun. 285(2), 235–243 (2001)

    CAS  PubMed  Google Scholar 

  22. G. Wu et al., Overexpression of glycosylphosphatidylinositol (GPI) transamidase subunits phosphatidylinositol glycan class T and/or GPI anchor attachment 1 induces tumorigenesis and contributes to invasion in human breast cancer. Cancer Res. 66(20), 9829–9836 (2006)

    CAS  PubMed  Google Scholar 

  23. P. Zhao et al., Proteomic identification of glycosylphosphatidylinositol anchor-dependent membrane proteins elevated in breast carcinoma. J. Biol. Chem. 287, 25230–25240 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Dolezala et al., Elevated levels of glycosylphosphatidylinositol (GPI) anchored proteins in plasma from human cancers detected by C. septicum alpha toxin. Cancer Biomark. 14, 55–62 (2014)

  25. K. Sambamurti et al., Glycosylphosphatidylinositol-anchored proteins play an important role in the biogenesis of the Alzheimer’s amyloid beta-protein. J. Biol. Chem. 274(38), 26810–26814 (1999)

    CAS  PubMed  Google Scholar 

  26. E.I. Walter et al., Effect of glycoinositolphospholipid anchor lipid groups on functional properties of decay-accelerating factor protein in cells. J. Biol. Chem. 267, 1245–1252 (1992)

    CAS  PubMed  Google Scholar 

  27. M.A. McDowell, D.M. Ransom, J.D. Bangs, Glycosylphosphatidylinositol-dependent secretory transport in Trypanosoma brucei. Biochem. J. 335, 681–689 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. P. Boccuni et al., Glycosyl phosphatidylinositol (GPI)-anchored molecules and the pathogenesis of paroxysmal nocturnal hemoglobinuria. Crit. Rev. Oncol. Hematol. 33, 25–43 (2000)

    CAS  PubMed  Google Scholar 

  29. B. Wang, G.-J. Boons, Carbohydrate Recognition: Biological Problems, Methods, and Applications (Wiley, Hoboken, 2011)

    Google Scholar 

  30. M. Jaiswal et al., A metabolically engineered spin-labeling approach for studying glycans on cells. Chem. Sci. 11, 12522–12532 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Jaiswal et al., Enzymatic glycoengineering-based spin labelling of cell surface sialoglycans to enable their analysis by electron paramagnetic resonance (EPR) spectroscopy. Analyst 147(5), 784–788 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Jaiswal et al., Different biophysical properties of cell surface α2,3- and α2,6-sialoglycans revealed by electron paramagnetic resonance spectroscopic studies. J. Phys. Chem. B 127(8), 1749–1757 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. W.L. Hubbell, D.S. Cafiso, C. Altenbach, Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7(9), 735–739 (2000)

    CAS  PubMed  Google Scholar 

  34. W.L. Hubbell et al., Recent advances in site-directed spin labeling of proteins. Curr. Opin. Struct. Biol. 8(5), 649–656 (1998)

    CAS  PubMed  Google Scholar 

  35. I.D. Sahu, G.A. Lorigan, Site-directed spin labeling EPR for studying membrane proteins. Biomed. Res. Int. 2018, 3248289 (2018)

    PubMed  PubMed Central  Google Scholar 

  36. P. Nguyen, P.Z. Qin, RNA dynamics: perspectives from spin labels. Wiley Interdiscip Rev RNA 3(1), 62–72 (2012)

    CAS  PubMed  Google Scholar 

  37. P.Z. Qin et al., Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry 42(22), 6772–6783 (2003)

    CAS  PubMed  Google Scholar 

  38. X. Zhang et al., Studying RNA using site-directed spin-labeling and continuous-wave electron paramagnetic resonance spectroscopy. Methods Enzymol. 469, 303–328 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. D.S. Cafiso, Identifying and quantitating conformational exchange in membrane proteins using site-directed spin labeling. Acc. Chem. Res. 47(10), 3102–3109 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. G.E. Fanucci, D.S. Cafiso, Recent advances and applications of site-directed spin labeling. Curr. Opin. Struct. Biol. 16(5), 644–653 (2006)

    CAS  PubMed  Google Scholar 

  41. L. Columbus, W.L. Hubbell, A new spin on protein dynamics. Trends Biochem. Sci. 27(6), 288–295 (2002)

    CAS  PubMed  Google Scholar 

  42. L. Columbus, W.L. Hubbell, Mapping backbone dynamics in solution with site-directed spin labeling: GCN4-58 bZip free and bound to DNA. Biochemistry 43(23), 7273–7287 (2004)

    CAS  PubMed  Google Scholar 

  43. L. Columbus et al., Molecular motion of spin labeled side chains in alpha-helices: analysis by variation of side chain structure. Biochemistry 40(13), 3828–3846 (2001)

    CAS  PubMed  Google Scholar 

  44. Z. Zhang et al., Multifrequency electron spin resonance study of the dynamics of spin labeled T4 lysozyme. J. Phys. Chem. B 114(16), 5503–5521 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. T.M. Casey et al., Continuous wave W- and D-Band EPR spectroscopy offer “sweet-spots” for characterizing conformational changes and dynamics in intrinsically disordered proteins. Biochem. Biophys. Res. Commun. 450(1), 723–728 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. C. Altenbach et al., Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40(51), 15471–15482 (2001)

    CAS  PubMed  Google Scholar 

  47. C.C. Jao et al., Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci U S A 105(50), 19666–19671 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Chen et al., Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J. Biol. Chem. 282(34), 24970–24979 (2007)

    CAS  PubMed  Google Scholar 

  49. J. Pyka et al., Accessibility and dynamics of nitroxide side chains in T4 lysozyme measured by saturation recovery EPR. Biophys. J. 89(3), 2059–2068 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. C. Altenbach et al., Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys. J. 89(3), 2103–2112 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. C. Altenbach et al., A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci USA 91(5), 1667–1671 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. T.L. Kirby, C.B. Karim, D.D. Thomas, Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase. Biochemistry 43(19), 5842–5852 (2004)

    CAS  PubMed  Google Scholar 

  53. G.E. Fanucci et al., Structure and dynamics of the beta-barrel of the membrane transporter BtuB by site-directed spin labeling. Biochemistry 41(39), 11543–11551 (2002)

    CAS  PubMed  Google Scholar 

  54. A. Gross, W.L. Hubbell, Identification of protein side chains near the membrane-aqueous interface: a site-directed spin labeling study of KcsA. Biochemistry 41(4), 1123–1128 (2002)

    CAS  PubMed  Google Scholar 

  55. C.Y. Cheng et al., Hydration dynamics as an intrinsic ruler for refining protein structure at lipid membrane interfaces. Proc Natl Acad Sci USA 110(42), 16838–16843 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. I. Kaminker, R. Barnes, S.I. Han, Overhauser dynamic nuclear polarization studies on local water dynamics. Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions, Pt B 564, 457–483 (2015)

    Google Scholar 

  57. C. Y. Cheng, et al. Cholesterol enhances surface water diffusion of phospholipid bilayers. J. Chem. Phys. 141(22), (2014)

  58. J. Song, B. Allison, S. Han, Local water diffusivity as a molecular probe of surface hydrophilicity. MRS Bull. 39(12), 1082–1088 (2014)

    CAS  Google Scholar 

  59. J.M. Franck, J.A. Scott, S.I. Han, Nonlinear scaling of surface water diffusion with bulk water viscosity of crowded solutions. J. Am. Chem. Soc. 135(11), 4175–4178 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Y. Hong et al., Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins. Nat. Commun. 13(1), 7326 (2022)

    PubMed  PubMed Central  Google Scholar 

  61. H. Moon et al., Evidence for entropically controlled interfacial hydration in mesoporous organosilicas. J. Am. Chem. Soc. 144(4), 1766–1777 (2022)

    CAS  PubMed  Google Scholar 

  62. I.R. Smith et al., Probing membrane hydration at the interface of self-assembled peptide amphiphiles using electron paramagnetic resonance. ACS Macro Lett. 7(10), 1261–1266 (2018)

    CAS  PubMed  Google Scholar 

  63. E. Saxon, C.R. Bertozzi, Cell surface engineering by a modified Staudinger reaction. Science 287(5460), 2007–2010 (2000)

    CAS  PubMed  Google Scholar 

  64. R. Xie et al., In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proc Natl Acad Sci USA 113(19), 5173–5178 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. P.A. Amato, E.R. Unanue, D.L. Taylor, Distribution of actin in spreading macrophages: a comparative study on living and fixed cells. J. Cell Biol. 96(3), 750–761 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. P. Lonn, U. Landegren, Close encounters - probing proximal proteins in live or fixed cells. Trends Biochem. Sci. 42(7), 504–515 (2017)

    PubMed  Google Scholar 

  67. G.I. Malinin, T.I. Malinin, Effects of dimethylsulfoxide on the ultrastructure of fixed cells. Biotech. Histochem. 79(2), 65–69 (2004)

    CAS  PubMed  Google Scholar 

  68. P. Watson, A.T. Jones, D.J. Stephens, Intracellular trafficking pathways and drug delivery: fluorescence imaging of living and fixed cells. Adv. Drug Deliv. Rev. 57(1), 43–61 (2005)

    CAS  PubMed  Google Scholar 

  69. S.R. Yoshida, B.K. Maity, S. Chong, Visualizing protein localizations in fixed cells: caveats and the underlying mechanisms. J. Phys. Chem. B 127(19), 4165–4173 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. S. Irgen-Gioro, et al. Fixation can change the appearance of phase separation in living cells. Elife, 11, (2022)

  71. S. Kiyoto et al., Improved chemical fixation of lipid-secreting plant cells for transmission electron microscopy. Microscopy (Oxf) 71(4), 206–213 (2022)

    CAS  PubMed  Google Scholar 

  72. C.A. Edechi et al., Comparison of fixation methods for the detection of claudin 1 and E-cadherin in breast cancer cell lines by immunofluorescence. J. Histochem. Cytochem. 70(2), 181–187 (2022)

    CAS  PubMed  Google Scholar 

  73. T. Ichikawa et al., Chemical fixation creates nanoscale clusters on the cell surface by aggregating membrane proteins. Commun Biol 5(1), 487 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. B. Cheng et al., 9-azido analogues of three sialic acid forms for metabolic remodeling of cell-surface sialoglycans. ACS Chem. Biol. 14(10), 2141–2147 (2019)

    CAS  PubMed  Google Scholar 

  75. K. Ikeda et al., Chemoenzymatic synthesis of an N-acetylneuraminic acid analogue having a carbamoylmethyl group at C-4 as an inhibitor of sialidase from influenza virus. Carbohydr. Res. 312(4), 183–189 (1998)

    CAS  PubMed  Google Scholar 

  76. C Wuebben, et al. Site-Directed Spin Labeling of RNA with a Gem-Diethylisoindoline Spin Label: PELDOR, Relaxation, and Reduction Stability. Molecules. 24(24), (2019)

  77. S. Stoll, A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178(1), 42–55 (2006)

    CAS  PubMed  Google Scholar 

  78. A.P. Todd, G.L. Millhauser, Esr-spectra reflect local and global mobility in a short spin-labeled peptide throughout the alpha-helix-]coil transition. Biochemistry 30(22), 5515–5523 (1991)

    CAS  PubMed  Google Scholar 

  79. S.M. Miick, A.P. Todd, G.L. Millhauser, Position-dependent local motions in spin-labeled analogs of a short alpha-helical peptide determined by electron-spin-resonance. Biochemistry 30(39), 9498–9503 (1991)

    CAS  PubMed  Google Scholar 

  80. N.L. Pirman et al., Characterization of the disordered-to-α-helical transition of IA3 by SDSL-EPR spectroscopy. Protein Sci. 20, 150–159 (2011)

    CAS  PubMed  Google Scholar 

  81. S.J. Moons et al., Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 29(6), 433–445 (2019)

    CAS  PubMed  Google Scholar 

  82. P.Z. Qin, J. Iseri, A. Oki, A model system for investigating lineshape/structure correlations in RNA site-directed spin labeling. Biochem. Biophys. Res. Commun. 343(1), 117–124 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  83. E.A. Hoffman et al., Formaldehyde crosslinking: a tool for the study of chromatin complexes. J. Biol. Chem. 290(44), 26404–26411 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. E. Raczuk, et al., Different Schiff Bases-Structure, Importance and Classification. Molecules, 27(3), (2022)

Download references

Funding

This study was supported by NIGMS/NIH (R35GM131686; ZG), NSF (MCB-1715384; GEF), an NIH instrumentation grant (S10 RR031603) for the Bruker E500 spectrometer, and Department of Chemistry, University of Florida for the Magnettech MS-5000 benchtop spectrometer. ZG thanks Steven and Rebecca Scott endowment to support our research.

Author information

Authors and Affiliations

Authors

Contributions

MJ, JG, and SK contributed to molecule synthesis, cell culturing, glycoengineering, spin labeling and chemical fixation; TTT and MZ contributed to EPR studies and spectral fitting analyses; GEF and ZG were overall responsible for the project design and supervision. The manuscript was written through contributions of all authors, and all authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Gail E. Fanucci.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3061 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, M., Tran, T.T., Guo, J. et al. Spin-Labeling Insights into How Chemical Fixation Impacts Glycan Organization on Cells. Appl Magn Reson 55, 317–333 (2024). https://doi.org/10.1007/s00723-023-01624-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01624-w

Navigation