Skip to main content
Log in

Two-Step Inversion Method for NMR Relaxometry Data Using Norm Smoothing and Artificial Fish Swarm Algorithm

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The inversion of nuclear magnetic resonance (NMR) relaxometry data based on the first kind of Fredholm equation is an ill-posed problem. The accurate transverse relaxation time (T2) distribution is of great significance to improve the application of NMR. The T2 distribution from the norm smoothing method for low signal-to-noise ratio (SNR) data is inaccurate owing to a large penalty term of the objective function. It is therefore important to improve the inaccuracy of the regularized solution. A two-step inversion method for NMR relaxometry data using norm smoothing and artificial fish swarm algorithm (AFSA) is proposed to improve the accuracy of inversion results. First, the raw NMR echo data are compressed using a simplified singular value decomposition method to reduce the inversion time. The regularized inversion solution from the norm smoothing method is taken as the initial values of the AFSA. Through the uncertainty analysis of the regularized inversion solution, the boundary of the fish swarm is determined. A more accurate solution is obtained by the iteration of the AFSA. The results show that the AFSA-optimized T2 distribution is closer to the T2 distribution of model than the regularized inversion solution in terms of the relaxation time and intensity of signal, and thus calculating the formation porosity more accurately. The proposed method shows good performance for processing NMR core data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.R. Coates, L.Z. Xiao, M.G. Prammer, NMR Logging: Principles and Applications (Halliburton Energy Services Sea Gulf Press, Houston, 1999), pp. 1–28

    Google Scholar 

  2. K.J. Dunn, D.J. Bergman, G.A. LaTorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Applications (Pergamon, New York, 2002), pp. 1–10

    Google Scholar 

  3. S. Stanislav, Stan’s Library I, 1-13 2006. https://doi.org/10.3247/SL1Nmr06.002

  4. A.M. Coffey, M.L. Truong, E.Y. Chekmenev, J. Magn. Reson. 237, 169–174 (2013). https://doi.org/10.1016/j.jmr.2013.10.013

    Article  ADS  Google Scholar 

  5. X. Ge, H. Wang, Y. Fan, Y. Cao, H. Chen, R. Huang, Comput. Phys. Commun. 198, 59–70 (2016). https://doi.org/10.1016/j.cpc.2015.09.003

    Article  ADS  Google Scholar 

  6. M. Prange, Y. Song, J. Magn. Reson. 196(1), 54–60 (2009). https://doi.org/10.1016/j.jmr.2008.10.008

    Article  ADS  Google Scholar 

  7. M. Prange, Y. Song, J. Magn. Reson. 204(1), 118–123 (2010). https://doi.org/10.1016/j.jmr.2010.02.010

    Article  ADS  Google Scholar 

  8. M. Tan, Y. Shi, G. Xie, Well Logging Technol. 31(5), 414–416 (2007). https://doi.org/10.1007/s11442-007-0020-2

    Article  Google Scholar 

  9. R. Salazar-Tio, B. Sun, Petrophysics 51, 03 (2010)

    Google Scholar 

  10. M.G. Prammer, in SPE Annual Technical Conference and Exhibition (New Orleans, USA, 1994). https://doi.org/10.2118/28368-MS.

  11. K.J. Dunn, G.A. LaTorraca, J. Magn. Reson. 140(1), 153–161 (1999). https://doi.org/10.1006/jmre.1999.1837

    Article  ADS  Google Scholar 

  12. L. Xiao, H. Zhang, G. Liao, S. Fu, K. Li, Chin. J. Geophys. 55, 11 (2012). (in Chinese)

    Article  ADS  Google Scholar 

  13. G.C. Borgia, R.J.S. Brown, P. Fantazzini, J. Magn. Reson. 132(1), 65–77 (1998). https://doi.org/10.1006/jmre.1998.1387

    Article  ADS  Google Scholar 

  14. J.P. Butler, J.A. Reeds, S.V. Dawson, SIAM J. Numer. Anal. 18(3), 381–397 (1981). https://doi.org/10.1137/0718025

    Article  ADS  MathSciNet  Google Scholar 

  15. K.J. Dunn, G.A. LaTorraca, J.L. Warner, D.J. Bergman, in SPE Annual Technical Conference and Exhibition (New Orleans, USA, 1994), SPE-28367-MS

  16. G.C. Borgia, R.J.S. Brown, P. Fantazzini, J. Magn. Reson. 147(2), 273–285 (2000). https://doi.org/10.1006/jmre.2000.2197

    Article  ADS  Google Scholar 

  17. F.K. Gruber, L. Venkataramanan, T.M. Habashy, P.M. Singer, D.E. Freed, J. Magn. Reson. 228, 95–103 (2013). https://doi.org/10.1016/j.jmr.2012.12.008

    Article  ADS  Google Scholar 

  18. X. Zhou, G. Su, L. Wang, S. Nie, X. Ge, J. Magn. Reson. 275, 46–54 (2017). https://doi.org/10.1016/j.jmr.2016.12.003

    Article  ADS  Google Scholar 

  19. J. Guo, R. Xie, M. Liu, I.E.E.E. Geosci, Remote Sens. 15(10), 1545–1549 (2018). https://doi.org/10.1109/LGRS.2018.2853667

    Article  Google Scholar 

  20. J. Guo, R. Xie, L. Xiao, G. Jin, L. Gao, J. Magn. Reson. 308, 106562 (2019). https://doi.org/10.1016/j.jmr.2019.07.049

    Article  Google Scholar 

  21. R.C. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence (Elsevier, Amsterdam, 2001)

    Google Scholar 

  22. X. Li, A new intelligent optimization method-artificial fish school algorithm, Ph.D. dissertation, Zhejiang University, Hangzhou, Zhejiang, China, Jan. 2003

  23. M. Dorigo, L.M. Gambardella, Biosystems 43(2), 73–81 (1997). https://doi.org/10.1016/S0303-2647(97)01708-5

    Article  Google Scholar 

  24. M. Taherkhani, R. Safabakhsh, Appl. Soft Comput. 38, 281–295 (2016). https://doi.org/10.1016/j.asoc.2015.10.004

    Article  Google Scholar 

  25. B. Sun, K.J. Dunn, J. Magn. Reson. 172(1), 152–160 (2005). https://doi.org/10.1016/j.jmr.2004.10.003

    Article  ADS  Google Scholar 

  26. A. Sezginer, Determining bound and unbound fluid volumes using nuclear magnetic resonance pulse sequences, US Patent 5363041, 1994

  27. J. Guo, R. Xie, G. Jin, I.E.E.E. Geosci, Remote Sens. 16(2), 301–305 (2018). https://doi.org/10.1109/LGRS.2018.2872111

    Article  Google Scholar 

  28. Y. Zou, R. Xie, Comput. Geosci. 19(2), 389–401 (2015). https://doi.org/10.1007/s10596-015-9479-6

    Article  Google Scholar 

  29. J. Guo, R. Xie, H. Liu, Appl. Magn. Reson. 50(1–3), 73–101 (2018). https://doi.org/10.1007/s00723-018-1037-7

    Article  Google Scholar 

  30. Y. Zou, R. Xie, A. Arad, Pet. Sci. 13(2), 237–246 (2016). https://doi.org/10.1007/s12182-016-0093-6

    Article  Google Scholar 

  31. Y. Zou, R. Xie, Y. Ding, Appl. Magn. Reson. 47, 1081–1094 (2016). https://doi.org/10.1007/s00723-016-0819-z

    Article  Google Scholar 

  32. X. Luan, Z. Li, T. Liu, Neurocomputing 174, 522–529 (2016). https://doi.org/10.1016/j.neucom.2015.06.090

    Article  Google Scholar 

  33. S.A. El-Said, Soft Comput. 19(9), 2667–2679 (2015). https://doi.org/10.1007/s00500-014-1436-0

    Article  Google Scholar 

  34. Z. Zheng, J. Li, P. Duan, Math. Comput. Simul. 155, 227–243 (2018). https://doi.org/10.1016/j.matcom.2018.04.013

    Article  Google Scholar 

  35. Y. Cheng, M. Jiang, D. Yuan, Novel clustering algorithms based on improved artificial fish swarm algorithm. Presented at 2009 sixth international conference on fuzzy systems and knowledge discovery. IEEE, 2009, vol. 3, pp. 141–145. https://doi.org/10.1109/FSKD.2009.534

  36. K. Zhu, M. Jiang, An improved artificial fish swarm algorithm based on chaotic search and feedback strategy. Presented at 2009 international conference on computational intelligence and software engineering. IEEE, 2009, pp. 1–4. https://doi.org/10.1109/CISE.2009.5366958

Download references

Acknowledgements

The authors gratefully thank the financial supports from the National Natural Science Foundation of China (41674126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranhong Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, M., Xie, R. & Xiao, L. Two-Step Inversion Method for NMR Relaxometry Data Using Norm Smoothing and Artificial Fish Swarm Algorithm. Appl Magn Reson 52, 1615–1634 (2021). https://doi.org/10.1007/s00723-021-01403-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01403-5

Navigation