Skip to main content
Log in

Electronic Structure of the Positive Radical of 13C-Labeled Poly(3-Octylthienylene Vinylene) Polymer

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Poly(3-octylthienylene vinylene) (O-PTV) has a great potential as low-bandgap p-type semiconductor for photovoltaic applications. Here, the positive radical state (positive polaron) is induced chemically in the O-PTV polymer in which the vinylene sites are selectively 13C-labeled. Using multi-frequency continuous wave and pulsed electron paramagnetic resonance, the g tensor and maximum 1H and 13C hyperfine couplings are determined. A comparative density functional theory (DFT) analysis of PTV-like oligomers is performed. The experimental parameters suggest a larger localization of the positive polaron than follows from the DFT analysis. The counter anion may play a crucial role in localizing the polaron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.V. Gravilenko, T.D. Matos, B.E. Bonner, S.-S. Sun, C. Zhang, V.I. Gravilenko, J. Phys. Chem. 112, 7908 (2008)

    Google Scholar 

  2. H.-Q. Xie, C.-M. Liu, J.-S. Guo, Eur. Polym. J. 32, 1131 (1996)

    Article  Google Scholar 

  3. H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett. 63, 1372 (1993)

    Article  ADS  Google Scholar 

  4. A. Henckens, K. Colladet, S. Fourier, T.J. Cleij, L. Lutsen, J. Gelan, D. Vanderzande, Macromolecules 38, 19 (2005)

    Article  ADS  Google Scholar 

  5. L. Yeon-Beom, S. Hong-Ku, K. Seung-Won, Macromol. Rapid Commun. 24, 522 (2003)

    Article  Google Scholar 

  6. A.P. Smith, R.R. Smith, B.E. Taylor, M.F. Durstock, Chem. Mater. 16, 4687 (2004)

    Article  Google Scholar 

  7. G. Kossmehl, M. Hartzel, G. Manecke, Makromol. Chemie 15, 131 (1970)

    Google Scholar 

  8. K. Van De Wetering, C. Brochon, C. Nhov, G. Hadziioannou, Macromolecules 39, 4289 (2006)

    Article  ADS  Google Scholar 

  9. R.S. Loewe, R.D. McCullough, Chem. Mater. 12, 3214 (2000)

    Article  Google Scholar 

  10. K.Y. Jen, R. Jow, H. Eckhard, R.L. Elsenbaumer, Polym. Mater. Sci. Eng. 56, 49 (1987)

    Google Scholar 

  11. H. Diliën, A. Palmaerts, M. Lenes, B. de Boer, P. Blom, T.J. Cleij, L. Lutsen, D. Vanderzande, Macromolecules 43, 10231 (2010)

    Article  ADS  Google Scholar 

  12. A. Henckens, L. Lutsen, D. Vanderzande, M. Knipper, J. Manca, J. SPIE Proc. 52 (2004)

  13. F. Banishoeib, S. Fourier, T.J. Cleij, L. Lutsen, D. Vanderzande, Eur. Phys. J. Appl. Phys. 37, 237 (2007)

    Article  ADS  Google Scholar 

  14. L.H. Nguyen, S. Günes, H. Neugebauer, N.S. Sariciftci, F. Banishoeib, A. Henckens, T.J. Cleij, L. Lutsen, D. Vanderzande, Sol. Energy Mater. Sol. Cells 90, 2815 (2006)

    Article  Google Scholar 

  15. F. Banishoeib, P. Adriaensens, S. Berson, S. Guillerez, O. Douhere, J. Manca, S. Fourier, T.J. Cleij, L. Lutsen, D. Vanderzande, Sol. Energy Mater. Sol. Cells 91, 1026 (2007)

    Article  Google Scholar 

  16. H. Diliën, S. Chambon, T.J. Cleij, L. Lutsen, D. Vanderzande, P.J. Adriaensens, Macromolecules 44, 4711 (2011)

    Article  ADS  Google Scholar 

  17. H. Diliën, L. Marin, E. Botek, B. Champagne, V. Lemaur, D. Beljonne, R. Lazzaroni, T.J. Cleij, W. Maes, L. Lutsen, D. Vanderzande, P. Adriaensens, J. Phys. Chem. B 115, 12040 (2011)

    Article  Google Scholar 

  18. C. Girotto, D. Cheyns, T. Aernouts, F. Banishoeib, L. Lutsen, T.J. Cleij, D. Vanderzande, J. Genoe, J. Poortmans, P. Heremans, Org. Electron. 9, 740 (2008)

    Article  Google Scholar 

  19. W. Eevers, M. De Wit, J. Briers, H. Geise, R. Mertens, P. Nagels, R. Callaerts, W. Herrebout, B. Van der Veken, Polymer 35, 4573 (1994)

    Article  Google Scholar 

  20. W. Mims, Proc. Roy. Soc. London A 283, 452 (1965)

    Article  ADS  Google Scholar 

  21. P. Höfer, A. Grupp, H. Nebenführ, M. Mehring, Chem. Phys. Lett. 132, 279 (1986)

    Article  ADS  Google Scholar 

  22. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    Article  ADS  Google Scholar 

  23. F. Neese, J. Chem. Phys 115, 11080 (2001)

    Article  ADS  Google Scholar 

  24. F. Neese, J. Phys. Chem. A 105, 4290 (2001)

    Article  Google Scholar 

  25. F. Neese, J. Chem. Phys. 118, 3939 (2003)

    Article  ADS  Google Scholar 

  26. F. Neese, J. Chem. Phys. 122, 034107 (2005)

    Article  ADS  Google Scholar 

  27. J. Perdew, Phys. Rev. B 33, 8822 (1986)

    Article  ADS  Google Scholar 

  28. J. Perdew, Phys. Rev. B 34, 7406 (1986)

    Article  ADS  Google Scholar 

  29. A. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  30. A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992)

    Article  ADS  Google Scholar 

  31. R. Ahlrichs et al. The Ahlrichs (2df, 2pd) polarization functions were obtained from the TurboMole basis set library under ftp://chemie.uni-karlsruhe.de/pub/basen, (unpublished)

  32. P. Stephens, F. Devlin, C. Chabalowski, M. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Article  Google Scholar 

  33. V. Barone, in Recent Advances in Density Functional Methods, ed. by D.P. Chong (Vol. 1, World Scientific Pub. Co. Inc., Singapore, 1995)

  34. J. Dill, J. Pople, J. Chem. Phys. 62, 2921 (1975)

    Article  ADS  Google Scholar 

  35. W. Here, R. Ditchfield, J. Pople, J. Chem. Phys. 56, 2257 (1972)

    Article  ADS  Google Scholar 

  36. R. Krishnan, J. Binkley, R. Seeger, J. Pople, J. Chem. Phys. 72, 650 (1980)

    Article  ADS  Google Scholar 

  37. S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, F. Neese, J. Phys. Chem. A 110, 2235 (2006)

    Article  Google Scholar 

  38. J. Niklas, K.L. Mardis, B.P. Banks, G.M. Grooms, A. Sperlich, V. Dyakonov, S. Beaupré, M. Leclerc, T. Xu, L. Yu, O.G. Poluektov, Phys. Chem. Chem. Phys. 15, 9562 (2013)

    Article  Google Scholar 

  39. A. Aguirre, P. Gast, S. Orlinskii, I. Akimoto, E.J.J. Groenen, H. El Mkami, E. Goovaerts, S. Van Doorslaer, Phys. Chem. Chem. Phys. 10, 7129 (2008)

    Article  Google Scholar 

  40. S. Stoll, C. Calle, G. Mitrikas, A. Schweiger, J. Magn. Reson. 177, 93 (2005)

    Article  ADS  Google Scholar 

  41. H. McConnell, D. Chesnut, J. Chem. Phys. 28, 107 (1958)

    Article  ADS  Google Scholar 

  42. N. Atherton, Principles of Electron Spin Resonance (Ellis Horwood Ltd., Chichester, 1993)

  43. J. Morton, Chem. Rev. 64, 453 (1964)

    Article  Google Scholar 

Download references

Acknowledgments

Yun Ling thanks the University of Antwerp for PhD funding (BOF-GOA project). S. Van Doorslaer and P. Adriaensens thank the scientific research community project MULTIMAR (Multidisciplinary Magnetic Resonance) of the Research Foundation Flanders (FWO-Vlaanderen) for their support. S. Van Doorslaer acknowledges the support from the Hercules Foundation, Flanders (Contract AUHA013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Van Doorslaer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Y., Diliën, H., Vanderzande, D. et al. Electronic Structure of the Positive Radical of 13C-Labeled Poly(3-Octylthienylene Vinylene) Polymer. Appl Magn Reson 45, 827–839 (2014). https://doi.org/10.1007/s00723-014-0561-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0561-3

Keywords

Navigation