Skip to main content
Log in

Overhauser DNP and EPR in a Mobile Setup: Influence of Magnetic Field Inhomogeneity

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Power-dependent Overhauser dynamic nuclear polarization (DNP) enhancements and continuous-wave electron paramagnetic resonance (EPR) spectra of nitroxide radicals were measured in the magnetic field of a mobile Halbach-array permanent magnet and compared with results from a commercially available electromagnet. DNP saturation factors for varying microwave power were obtained from both measurement series and used to investigate how the increased magnetic field inhomogeneity present in the Halbach magnet affects the saturation efficiency. An EPR detection system was designed to allow continuous-wave EPR measurements at microwave power up to 20 W. Our results show that despite the lower magnetic field homogeneity, a Halbach-array magnet can be used for EPR and DNP-enhanced nuclear magnetic resonance of high quality providing almost the same performance as a more homogeneous electromagnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Svensson, S. Mansson, E. Johansson, J.S. Petersson, L.E. Olsson, Magn. Reson. Med. 50, 256 (2003)

    Article  Google Scholar 

  2. E. Johansson, L.E. Olsson, S. Mansson, J.S. Petersson, K. Golman, F. Ståhlberg, R. Wirestam, Magn. Reson. Med. 52, 1043 (2004)

    Article  Google Scholar 

  3. K. Golman, R. in’t Zandt, M. Lerche, R. Pehrson, J.H. Ardenkjaer-Larsen, Cancer Res. 66, 10855 (2006)

    Google Scholar 

  4. J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hannson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Nat. Acad. Sci. USA 100, 10158 (2003)

    Google Scholar 

  5. K.H. Hausser, D. Stehlik, Adv. Magn. Reson. 3, 79 (1968)

    Google Scholar 

  6. M.D. Lingwood, T.A. Siaw, N. Sailasuta, B.D. Ross, P. Bhattacharya, S. Han, J. Magn. Reson. 205, 247 (2010)

    Article  ADS  Google Scholar 

  7. K. Münnemann, C. Bauer, J. Schmiedeskamp, H.W. Spiess, W.G. Schreiber, D. Hinderberger, Appl. Magn. Reson. 34, 321 (2008)

    Article  Google Scholar 

  8. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    Article  ADS  Google Scholar 

  9. K. Halbach, IEEE Trans. Nucl. Sci. 26, 3882 (1979)

    Article  ADS  Google Scholar 

  10. H. Raich, P. Blümler, Conc. Magn. Reson. B 23, 16 (2004)

    Article  Google Scholar 

  11. H.A. Leupold, E. Potenziani II, M.G. Abele, J. Appl. Phys. 64, 5994 (1988)

    Article  ADS  Google Scholar 

  12. B.D. Armstrong, M.D. Lingwood, E.R. McCarney, E.R. Brown, P. Blümler, S. Han, J. Magn. Reson. 191, 273–281 (2008)

    Article  ADS  Google Scholar 

  13. C. Bauer, H. Raich, G. Jeschke, P. Blümler, J. Magn. Reson. 198, 222 (2009)

    Article  ADS  Google Scholar 

  14. H. Soltner, P. Blümler, Conc. Magn. Reson. A 36, 211 (2010)

    Article  Google Scholar 

  15. User manual for HP 83545A RF PLUG-IN, Hewlett Packard (1981)

  16. J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance, 2nd edn. (Wiley Interscience, New Jersey, 2007), p. 312

    Google Scholar 

  17. G.W. Brudvig, D.F. Blair, S.I. Chan, J. Biol. Chem. 259(17), 11001 (1984)

    Google Scholar 

  18. M.T. Türke, I. Tkach, M. Reese, P. Höfer, M. Bennati, Phys. Chem. Chem. Phys. 12, 5893 (2010)

    Article  Google Scholar 

  19. J.S. Hyde, J–.J. Yin, W.K. Subczynski, T.G. Camenisch, J.J. Ratke, W. Froncisz, J. Phys. Chem. B. 108, 9524 (2004)

    Google Scholar 

  20. M. Dutka, R.J. Gurbiel, J. Koziol, W. Froncisz, J. Magn. Reson. 170, 220 (2004)

    Article  ADS  Google Scholar 

  21. I. Bertini, G. Martini, C. Luchinat, in Handbook of electron spin resonance, ed. by C.P. Poole Jr, H.A. Farach (American Institute of Physics, New York, 1994), p. 174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Münnemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 Setup of another experiment in our group where the Halbach magnet was brought close to a 20 cm bore 4.7T MRI magnet.

Online Resource 2 (a) Temperature-dependent measurement of the longitudinal (squares) and transversal (circles) nuclear relaxation time for a 2.5 mM aqueous solution of TEMPOL and spline interpolation of the T 2,n data (line). (b) Sample heating resulting from pulsed microwave irradiation with a power of 0.7 W in dependence of the irradiation time (symbols) and the best fit following an exponential saturation behavior (line). The maximum temperature increase of 30.5 K (not shown) was obtained from continuous microwave irradiation for more than 30 s and was used to define the corresponding fit parameter. A time constant of 2.16±0.03 s was obtained from the fit.

Online Resource 3 Microwave power dependent absorption amplitude coefficients A a,corr (symbols) and best fits (lines) obtained from equation 15.

Online Resource 4 Parameters of the fits shown in Online Resource 3.

Supplementary material 1 (PDF 634 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neudert, O., Zverev, D.G., Bauer, C. et al. Overhauser DNP and EPR in a Mobile Setup: Influence of Magnetic Field Inhomogeneity. Appl Magn Reson 43, 149–165 (2012). https://doi.org/10.1007/s00723-012-0347-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0347-4

Keywords

Navigation