Skip to main content
Log in

Development of Dissolution DNP-MR Substrates for Metabolic Research

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Dissolution dynamic nuclear polarization (DNP) provides a broadly applicable and rather simple means of developing probes for the real-time molecular imaging of cellular functions in vivo. The development of novel dissolution DNP substrate formulations is only rewarding for substrates that yield detectable metabolism within few minutes. In addition, in vivo preparations usually require amorphous samples at molar substrate concentrations for an efficient and reproducible DNP step with sufficient material. The composition ranges of novel substrate preparations need to be established experimentally owing to the solute’s impact on vitrification behavior. Here, we describe simple rationales employed in the development of novel substrate preparations for dissolution DNP-magnetic resonance. Solution state substrate polarizations between 10 and 40 % have been obtained for ~40 metabolic substrates in highly concentrated preparations that yield physiologically tolerable solutions with sufficient T 1 for in vivo nuclear magnetic resonance. Substrate metabolism is observed for novel in vivo substrates such as 3-hydroxybutyrate and aspartate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.G. Griffin, T.F. Prisner, Phys. Chem. Chem. Phys. 12(22), 5737–5740 (2010)

    Article  Google Scholar 

  2. K. Golman, R.I. Zandt, M. Lerche, R. Pehrson, J.H. Ardenkjaer-Larsen, Cancer Res. 66(22), 10855–10860 (2006)

    Article  Google Scholar 

  3. P.R. Jensen, M. Karlsson, S. Meier, J.O. Duus, M.H. Lerche, Chemistry 15(39), 10010–10012 (2009)

    Article  Google Scholar 

  4. F.A. Gallagher, M.I. Kettunen, S.E. Day, D.E. Hu, J.H. Ardenkjaer-Larsen, R. Zandt, P.R. Jensen, M. Karlsson, K. Golman, M.H. Lerche, K.M. Brindle, Nature 453(7197), 940–943 (2008)

    Article  ADS  Google Scholar 

  5. F.A. Gallagher, M.I. Kettunen, D.E. Hu, P.R. Jensen, R.I. Zandt, M. Karlsson, A. Gisselsson, S.K. Nelson, T.H. Witney, S.E. Bohndiek, G. Hansson, T. Peitersen, M.H. Lerche, K.M. Brindle, Proc. Natl. Acad. Sci. USA. 106(47), 19801–19806 (2009)

    Google Scholar 

  6. P.R. Jensen, T. Peitersen, M. Karlsson, R. in ‘t Zandt, A. Gisselsson, G. Hansson, S. Meier, M.H. Lerche, J. Biol. Chem. 284(52), 36077–36082 (2009)

    Google Scholar 

  7. M. Karlsson, P.R. Jensen, R. in ‘t Zandt, A. Gisselsson, G. Hansson, J.O. Duus, S. Meier, M.H. Lerche, Int. J. Cancer 127(3), 729–736 (2010)

    Article  Google Scholar 

  8. F.A. Gallagher, M.I. Kettunen, S.E. Day, D.E. Hu, M. Karlsson, A. Gisselsson, M.H. Lerche, K.M. Brindle, Magn. Reson. Med. 66(1), 18–23 (2011)

    Article  Google Scholar 

  9. F.A. Gallagher, M.I. Kettunen, S.E. Day, M. Lerche, K.M. Brindle, Magn. Reson. Med. 60(2), 253–257 (2008)

    Article  Google Scholar 

  10. S. Meier, P.R. Jensen, J.O. Duus, FEBS Lett. 585(19), 3133–3138 (2011)

    Article  Google Scholar 

  11. S. Meier, P.R. Jensen, J.O. Duus, ChemBioChem 13(2), 308–310 (2012)

    Article  Google Scholar 

  12. S. Meier, M. Karlsson, P.R. Jensen, M.H. Lerche, J.O. Duus, Mol. BioSyst. 7(10), 2834–2836 (2011)

    Article  Google Scholar 

  13. J.H. Ardenkjær-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Nat. Acad. Sci. USA. 100(18), 10158–10163 (2003)

    Article  ADS  Google Scholar 

  14. C.A. Angell, E.J. Sare, J. Chem. Phys. 52(3), 1058–1068 (1970)

    Article  ADS  Google Scholar 

  15. C.A. Angell, R.D. Bressel, J.L. Green, H. Kanno, M. Oguni, E.J. Sare, J. Food Eng. 22(1–4), 115–142 (1994)

    Article  Google Scholar 

  16. Y. Yoshimura, A. Onishi, H. Kanno, J. Solut. Chem. 28(10), 1127–1136 (1999)

    Article  Google Scholar 

  17. E.I. Bunyatova, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 356(1), 29–33 (1995)

    Article  ADS  Google Scholar 

  18. B. Eichelman, N.B. Thoa, J. Perez-Cruet, Pharmacol. Biochem. Behav. 1(1), 121–123 (1973)

    Article  Google Scholar 

  19. R.R. Fieve, H. Meltzer, D.L. Dunner, M. Levitt, J. Mendlewicz, A. Thomas, Am. J. Psychiatry 130(1), 55–61 (1973)

    Google Scholar 

  20. P.O. Ettinger, T.J. Regan, H.A. Oldewurtel, Am. Heart J. 88(3), 360–371 (1974)

    Article  Google Scholar 

  21. D.H. Lawson, Q. J. Med. 43(171), 433–440 (1974)

    Google Scholar 

  22. G.T. Johnson, T.R. Lewis, W.D. Wagner, Toxicol. Appl. Pharmacol. 32(2), 239–245 (1975)

    Article  Google Scholar 

  23. Z. Gottesfeld, Psychopharmacologia 45(3), 239–242 (1976)

    Article  Google Scholar 

  24. V. Yap, A. Patel, J. Thomsen, JAMA 236(24), 2775–2776 (1976)

    Article  Google Scholar 

  25. L. Lumata, Z. Kovacs, C. Malloy, A.D. Sherry, M. Merritt, Phys. Med. Biol. 56(5), N85–N92 (2011)

    Article  ADS  Google Scholar 

  26. T.E. Needham Jr, A.N. Paruta, R.J. Gerraughty, J. Pharm. Sci. 60(4), 565–567 (1971)

    Article  Google Scholar 

  27. K.D. Safa, M. Babazadeh, H. Namazi, M. Mahkam, M.G. Asadi, Eur. Polym. J. 40(3), 459–466 (2004)

    Article  Google Scholar 

  28. A.A. Strechan, Y.U. Paulechka, A.V. Blokhin, G.J. Kabo, J. Chem. Thermodyn. 40(4), 632–639 (2008)

    Article  Google Scholar 

  29. F. Franks, Pure Appl. Chem. 65(12), 2527–2537 (1993)

    Article  Google Scholar 

  30. M. Plückthun, C. Bradtke, H. Dutz, R. Gehring, S. Goertz, J. Harmsen, P. Kingsberry, W. Meyer, G. Reicherz, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 400(1), 133–136 (1997)

    Article  ADS  Google Scholar 

  31. P. Mieville, P. Ahuja, R. Sarkar, S. Jannin, P.R. Vasos, S. Gerber-Lemaire, M. Mishkovsky, A. Comment, R. Gruetter, O. Ouari, P. Tordo, G. Bodenhausen, Angew. Chem. Int. Ed. Engl. 49(35), 6182–6185 (2010)

    Article  Google Scholar 

  32. A.E. Dementyev, D.G. Cory, C. Ramanathan, Phys. Rev. Lett. 100(12), 127601 (2008)

    Article  ADS  Google Scholar 

  33. L. Laffel, Diabetes Metab. Res. Rev. 15(6), 412–426 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde H. Lerche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, M., Jensen, P.R., Duus, J.Ø. et al. Development of Dissolution DNP-MR Substrates for Metabolic Research. Appl Magn Reson 43, 223–236 (2012). https://doi.org/10.1007/s00723-012-0336-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0336-7

Keywords

Navigation