Skip to main content
Log in

The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In order to better constrain the evolution and petrogenesis of pegmatite, geochemical analysis was conducted on a suite of apatite crystals from the Altay Koktokay No. 3 pegmatite, Xinjiang, China and from the granitic and amphibolitic wall rocks. Apatite samples derived from pegmatite zones show convex tetrad effects in their REE patterns, extremely negative Eu anomalies and non-chondritic Y/Ho ratios. In contrast, chondritic Y/Ho ratios and convex tetrad effects are observed in the muscovite granite suggesting that different processes caused non-chondritic Y/Ho ratios and lanthanide tetrad effects. Based on the occurrence of convex tetrad effects in the host rocks and their associated minerals, we propose that the tetrad effects are likely produced from immiscible fluoride and silicate melts. This is in contrast to previous explanations of the tetrad effect; i.e. surface weathering, fractional crystallization and/or fluid-rock interaction. Additionally, we put forward that extreme negative Eu and non-chondritic Y/Ho in apatite are likely caused by the large amount of hydrothermal fluid exsolved from the pegmatite melts. Evolution of melt composition was found to be the primary cause of inter and intra-crystal major and trace element variations in apatite. Mn entering into apatite via substitution of Ca is supported by the positive correlation between CaO and MnO. Different evolution trends in apatite composition imply different crystallization environments between wall rocks and pegmatite zones. Based on the geochemistry of apatite samples, it is likely that there is a genetic relationship between the source of muscovite granite and the source of the pegmatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramov SS (2001) Modeling of REE fractionation in the acid melt-fluoride-chloride fluid system. Dokl Earth Sci 377:198–200

    Google Scholar 

  • Akagi T, Shabani MB, Masuda A (1993) Lanthanide tetrad effect in kimuraite [CaY2(CO3)4·6H2O]: implication for a new geochemical index. Geochim Cosmochim Acta 57:2899–2905

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Arth JG, Barker F (1976) Rare-earth partitioning between hornblende and dacitic liquid and implications for the genesis of trondhjemitic-tonalitic magmas. Geology 4:534–536

    Article  Google Scholar 

  • Badanina EV, Trumbull RB, Dulski P, Wiedenbeck M, Veksler IV, Syritso LF (2006) The behavior of rare-earth and lithophile trace elements in rare-metal granites: a study of fluorite, melt inclusions and host rocks from the Khangilay complex, Transbaikalia, Russia. Can Mineral 44:667–692

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  Google Scholar 

  • Bau M (1997) The Lanthanide tetrad effect in highly evolved felsic igneous rocks: a reply to the comment by Y. Pan. Contrib Mineral Petrol 128:409–412

    Article  Google Scholar 

  • Belousova EA, Walters S, Griffin WL, O’Reilly SY (2001) Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Aust J Earth Sci 48:603–619

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Explor 76:45–69

    Article  Google Scholar 

  • Candela PA (1990) Theoretical constraints on the chemistry of the magmatic aqueous phase. In: Stein HJ, Hannah JL (eds) Ore-bearing granite systems, petrogenesis and mineralizaing processes. Geol Soc Am, Special Paper 246:11–19

  • Cao MJ, Li GM, Qin KZ, Seitmuratova EY, Liu YS (2012) Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: implications for petrogenesis and mineralization. Resour Geol 62:63–83

    Article  Google Scholar 

  • Černý P (1991) Rare-element granitic pegmatites. Part II: regional to global environments and petrogenesis. Geosci Can 18:68–81

    Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  • Chu M, Wang K, Griffin W, Chung S, O’Reilly S, Pearson N, Iizuka Y (2009) Apatite composition: tracing petrogenetic processes in Transhimalayan granitoids. J Petrol 50:1829–1855

    Article  Google Scholar 

  • Dolejš D, Baker DR (2004) Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O- F2O−1: stability of fluorine-bearing minerals in felsic igneous suites. Contrib Mineral Petrol 146:762–778

    Article  Google Scholar 

  • Dolejš D, Baker DR (2007a) Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O−1-H2O to 100 MPa: II. Differentiation paths of fluorosilicic magmas in hydrous systems. J Petrol 48:807–828

    Article  Google Scholar 

  • Dolejš D, Baker DR (2007b) Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O−1-H2O to 100 MPa: I. Silicate-fluoride liquid immiscibility in anhydrous systems. J Petrol 48:785–806

    Article  Google Scholar 

  • Dolejš D, Štemprok M (2001) Magmatic and hydrothermal evolution of Li-F granites: Cínovec and Krásno intrusions, Krušné hory batholith, Czech Republic. Bull Geosci 76:77–99

    Google Scholar 

  • Drake MJ, Weill DF (1975) Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochim Cosmochim Acta 39:689–712

    Article  Google Scholar 

  • Fidelis I, Siekierski S (1966) The regularities in stability constants of some rare earth complexes. J Inorg Nucl Chem 28:185–188

    Article  Google Scholar 

  • Green T, Pearson N (1983) Effect of pressure on rare earth element partition coefficients in common magmas. Nature 305:414–416

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Article  Google Scholar 

  • Henoc J, Tong M (1978) Automatisation de la microsonde. J Microsc Spectrosc Electr 3:247–254

    Google Scholar 

  • Hidaka H, Holliger P, Shimizu H, Masuda A (1992) Lanthanide tetrad effect observed in the Oklo and ordinary uraninites and its implication for their forming processes. Geochem J 26:337–346

    Article  Google Scholar 

  • Hu ZC, Gao S, Liu YS, Hu SH, Chen HH, Yuan HB (2008) Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal At Spectrom 23:1093–1101

    Article  Google Scholar 

  • Hughes JM, Cameron M, Crowley KD (1991) Ordering of divalent cations in the apatite structure; crystal structure refinements of natural Mn-and Sr-bearing apatite. Am Mineral 76:1857–1862

    Google Scholar 

  • Inoue M, Nakamura N, Kimura M (2009) Tetrad effects in REE abundance patterns of chondrules from CM meteorites: implications for aqueous alteration on the CM parent asteroid. Geochim Cosmochim Acta 73:5224–5239

    Article  Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508

    Article  Google Scholar 

  • Jahn BM, Wu FY, Capdevila R, Martineau F, Zhao ZH, Wang YX (2001) Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos 59:171–198

    Article  Google Scholar 

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Article  Google Scholar 

  • Jolliff BL, Papike JJ, Laul JC (1987) Mineral recorders of pegmatite internal evolution: REE contents of tourmaline from the Bob Ingersoll pegmatite, South Dakota. Geochim Cosmochim Acta 51:2225–2232

    Article  Google Scholar 

  • Jolliff BL, Papike JJ, Shearer CK, Shimizu N (1989) Inter- and intra-crystal REE variations in apatite from the Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochim Cosmochim Acta 53:429–441

    Article  Google Scholar 

  • Jørgensen CK (1970) The “Tetrad effect” of Peppard is a variation of the nephelauxetic ratio in the third decimal. J Inorg Nucl Chem 32:3127–3128

    Article  Google Scholar 

  • Kawabe I (1992) Lanthanide tetrad effect in the Ln3+ ionic radii and refined spin-pairing energy theory. Geochem J 26:309–335

    Article  Google Scholar 

  • Kawabe I (1995) Tetrad effects and fine structures of REE abundance patterns of granitic and rhyolitic rocks: ICP-AES determinations of REE and Y in eight GSJ reference rocks. Geochem J 29:213–230

    Article  Google Scholar 

  • Kawabe I, Ohta A, Ishii S, Tokumura M, Miyauchi K (1999) REE partitioning between Fe-Mn oxyhydroxide precipitates and weakly acid NaCl solutions: convex tetrad effect and fractionation of Y and Sc from heavy lanthanides. Geochem J 33:167–180

    Article  Google Scholar 

  • Keppler H (1993) Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contrib Mineral Petrol 114:479–488

    Article  Google Scholar 

  • Klemme S (2004) Evidence for fluoride melts in Earth’s mantle formed by liquid immiscibility. Geology 32:441–444

    Article  Google Scholar 

  • Larsen RB (2002) The distribution of rare-earth elements in K-feldspar as an indicator of petrogenetic processes in granitic pegmatites: examples from two pegmatite fields in southern Norway. Can Mineral 40:137–152

    Article  Google Scholar 

  • Larsen RB, Henderson I, Ihlen PM, Jacamon F (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contrib Mineral Petrol 147:615–628

    Article  Google Scholar 

  • Lee SG, Masuda A, Kim HS (1994) An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chem Geol 114:59–67

    Article  Google Scholar 

  • Lee SG, Asahara Y, Tanaka T, Kim NH, Kim KH, Yi K, Masuda A, Song YS (2010) La-Ce and Sm-Nd isotopic systematics of early Proterozoic leucogranite with tetrad REE pattern. Chem Geol 276:360–373

    Article  Google Scholar 

  • Liu CQ, Zhang H (2005) The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: an intrinsic feature of the pegmatite magma. Chem Geol 214:61–77

    Article  Google Scholar 

  • Liu CQ, Masuda A, Okada A, Yabuki S, Zhang J, Fan ZL (1993) A geochemical study of loess and desert sand in northern China: Implications for continental crust weathering and composition. Chem Geol 106:359–374

    Article  Google Scholar 

  • Liu Y, Deng J, Li CF, Shi GH, Zheng AL (2007) REE composition in scheelite and scheelite Sm-Nd dating for the Xuebaoding W-Sn-Be deposit in Sichuan. Chin Sci Bull 52:2543–2550

    Article  Google Scholar 

  • Liu Y, Hu Z, Gao S, Gunther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Article  Google Scholar 

  • Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Lu HZ, Wang ZG, Li YS (1997) Magma-fluid transition and the genesis of pegmatite dike No. 3, Altay, Xinjiang, Northwest China. Chin J Geochem 16:43–52

    Article  Google Scholar 

  • Lumpkin GR, Chakoumakos BC, Ewing RC (1986) Mineralogy and radiation effects of microlite from the Harding Pegmatite, Taos County, New Mexico. Am Mineral 71:569–588

    Google Scholar 

  • Martin RF, De Vito C (2005) The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. Can Mineral 43:2027–2048

    Article  Google Scholar 

  • Masau M, Černý P, Chapman R (2000) Dysprosian Xenotime-(Y) from the Annie Claim #3 granitic pegmatite, Southeastern Manitoba, Canada: evidence of the tetrad effect? Can Mineral 38:899–905

    Article  Google Scholar 

  • Masuda A, Akagi T (1989) Lanthanide tetrad effect observed in leucogranites from China. Geochem J 23:245–253

    Article  Google Scholar 

  • Masuda A, Ikeuchi Y (1979) Lanthanide tetrad effect observed in marine environment. Geochem J 13:19–22

    Article  Google Scholar 

  • Masuda A, Kawakami O, Dohmoto Y, Takenaka T (1987) Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem J 21:119–124

    Article  Google Scholar 

  • Masuda A, Matsuda N, Minami M, Yamamoto H (1994) Approximate estimation of the degree of lanthanide tetrad effect from precise but partially void data measured by isotope dilution and an electron configuration model to explain the tetrad phenomenon. Proc Jpn Acad 70B:169–174

    Google Scholar 

  • McLennan SM (1994) Rare earth element geochemistry and the “tetrad” effect. Geochim Cosmochim Acta 58:2025–2033

    Article  Google Scholar 

  • Minami M, Masuda A (1997) Approximate estimation of the degree of lanthanide tetrad effect from the data potentially involving all lanthanides. Geochem J 31:125–134

    Article  Google Scholar 

  • Minami M, Masuda A, Takahashi K, Adachi M, Shimizu H (1998) Y-Ho fractionation and lanthanide tetrad effect observed in cherts. Geochem J 32:405–420

    Article  Google Scholar 

  • Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66:1185–1196

    Article  Google Scholar 

  • Monecke T, Dulski P, Kempe U (2007) Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn-W deposit, Germany. Geochim Cosmochim Acta 71:335–353

    Article  Google Scholar 

  • Muecke GK, Clarke DB (1981) Geochemical evolution of the South Mountain batholith, Nova Scotia: rare-earth-element evidence. Can Mineral 19:133–145

    Google Scholar 

  • Nabelek P, Russ-Nabelek C, Denison J (1992a) The generation and crystallization conditions of the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota, USA: petrologic and geochemical constraints. Contrib Mineral Petrol 110:173–191

    Article  Google Scholar 

  • Nabelek P, Russ-Nabelek C, Haeussler G (1992b) Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota. Geochim Cosmochim Acta 56:403–417

    Article  Google Scholar 

  • Pan YM (1997) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect—a discussion of the article by M. Bau (1996). Contrib Mineral Petrol 128:405–408

    Article  Google Scholar 

  • Pan YM, Breaks FW (1997) Rare-earth elements in fluorapatite, Separation Lake area, Ontario; evidence for S-type granite-rare-element pegmatite linkage. Can Mineral 35:659–671

    Google Scholar 

  • Peppard DF, Mason GW, Lewey S (1969) A Tetrad effect in the liquid-liquid extraction ordering of lanthanides (III). J Inorg Nucl Chem 31:2271–2272

    Article  Google Scholar 

  • Peretyazhko IS, Savina EA (2010a) Fluid and magmatic processes in the formation of the Ary-Bulak ongonite massif (eastern Transbaikalia). Russ Geol Geophys 51:1110–1125

    Article  Google Scholar 

  • Peretyazhko IS, Savina EA (2010b) Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride-silicate liquid immiscibility in magmatic systems. Petrology 18:514–543

    Article  Google Scholar 

  • Peretyazhko IS, Zagorsky VY, Tsareva EA, Sapozhnikov AN (2007) Immiscibility of calcium fluoride and aluminosilicate melts in ongonite from the Ary-Bulak intrusion, Eastern Transbaikal region. Dokl Earth Sci 413:315–320

    Article  Google Scholar 

  • Piccoli PM, Candela PA (1994) Apatite in felsic rocks; a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra Nevada Batholith) magmas. Am J Sci 294:92–135

    Article  Google Scholar 

  • Piccoli PM, Candela PA, Williams TJ (1999) Estimation of aqueous HCl and Cl concentrations in felsic systems. Lithos 46:591–604

    Article  Google Scholar 

  • Ponader CW, Brown GE Jr (1989) Rare earth elements in silicate systems: II. Interactions of La, Gd and Yb with halogens. Geochim Cosmochim Acta 53:2905–2914

    Article  Google Scholar 

  • Simmons WB, Webber KL (2008) Pegmatite genesis: state of the art. Eur J Mineral 20:421–438

    Article  Google Scholar 

  • Simmons WB, Foord EE, Falster AU (1996) Anatectic origin of granitic pegmatites, western Maine, USA. GAC-MAC Annual Meeting. Winnipeg, Abstracts Programme, pp A87

  • Sirbescu MLC, Leatherman MA, Student JJ, Beehr AR (2009) Apatite textures and compositions as records of crystalization processes in the Animik Red Ace pegmatite dike, Wisconsin, USA. Can Mineral 47:725–743

    Article  Google Scholar 

  • Soares DR, Beurlen H, Barreto SDB, Da Silva MRR, Ferreira CM (2008) Compositonal variation of tourmaline-group minerals in the Borborema pegmatite province, Northeastern Brazil. Can Mineral 46:1097–1116

    Article  Google Scholar 

  • Takahashi Y, Yoshida H, Sato N, Hama K, Yusa Y, Shimizu H (2002) W- and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposit, central Japan. Chem Geol 184:311–335

    Article  Google Scholar 

  • Tepper JH, Kuehner SM (1999) Complex zoning in apatite from the Idaho Batholith; a record of magma mixing and intracrystalline trace element diffusion. Am Mineral 84:581–595

    Google Scholar 

  • Tomascak PB, Krogstad EJ, Walker RJ (1998) Sm-Nd isotope systematics and the derivation of granitic pegmatites in southwestern Maine. Can Mineral 36:327–337

    Google Scholar 

  • Veksler IV, Dorfman AM, Kamenetsky M, Dulski P, Dingwell DB (2005) Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim Cosmochim Acta 69:2847–2860

    Google Scholar 

  • Wang X, Zhou TR, Xu J, Yu X, Qiu Y (1981) Mineralogy of the pegmatites in Altay. Science Press, Beijing, p 140, in Chinese

    Google Scholar 

  • Wang RC, Hu H, Zhang AC, Fontan F, Zhang H, Parseval PD (2006) Occurrence and late re-equilibration of pollucite from the Koktokay no. 3 pegmatite, Altai, northwestern China. Am Mineral 91:729–739

    Article  Google Scholar 

  • Wang RC, Hu H, Zhang AC, Parseval PD, Jiang SY (2007a) Cs-dominant polylithionite in the Koktokay# 3 pegmatite, Altai, NW China: in situ micro-characterization and implication for the storage of radioactive cesium. Contrib Mineral Petrol 153:355–367

    Article  Google Scholar 

  • Wang T, Tong Y, Jahn BM, Zou TR, Wang YB, Hong DW, Han BF (2007b) SHRIMP U-Pb Zircon geochronology of the Altai No. 3 Pegmatite, NW China and its implications for the origin and tectonic setting of the pegmatite. Ore Geol Rev 32:325–336

    Article  Google Scholar 

  • Wang RC, Che XD, Zhang WL, Zhang AC, Zhang H (2009) Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay# 3 pegmatite (Altai, NW China). Eur J Mineral 21:795–809

    Article  Google Scholar 

  • Webster JD (1990) Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt: implications for mineralizing magmatic-hydrothermal fluids in F-rich granitic systems. Contrib Mineral Petrol 104:424–438

    Article  Google Scholar 

  • Webster JD (2004) The exsolution of magmatic hydrosaline chloride liquids. Chem Geol 210:33–48

    Article  Google Scholar 

  • Wu CN, Zhu JC, Liu CS, Yang SZ, Zhu BY, Ning GJ (1995) A study on the inclusions in beryls from Kuwei and Keketuohai pegmatites, Altai, Xinjiang. J Nanjing Univ 31:351–356, in Chinese with English abstract

    Google Scholar 

  • Wu FY, Sun DY, Jahn BM, Wilde S (2004) A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. J Asian Earth Sci 23:731–744

    Article  Google Scholar 

  • Wu CZ, Liu SH, Gu LX, Zhang ZZ, Lei RX (2011) Formation mechanism of the lanthanide tetrad effect for a topaz- and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China. J Asian Earth Sci 42:903–916

    Article  Google Scholar 

  • Yasnygina T, Rasskazov S (2008) Tetrad effect in rare earth element distribution patterns: evidence from the Paleozoic granitoids of the Oka zone, Eastern Sayan. Geochem Int 46:814–825

    Article  Google Scholar 

  • Yurimoto H, Duke EF, Papike JJ, Shearer CK (1990) Are discontinuous chondrite-normalized REE patterns in pegmatitic granite systems the results of monazite fractionation? Geochim Cosmochim Acta 54:2141–2145

    Article  Google Scholar 

  • Zhang AC, Wang RC, Hu H, Chen XM, Zhang H (2004a) Occurrences of foitite and rossmanite from the Koktokay No. 3 granitic pegmatite dyke, Altai, northwestern China: a record of hydrothermal fluids. Can Mineral 42:873–882

    Article  Google Scholar 

  • Zhang AC, Wang RC, Hu H, Zhang H, Zhu JC, Chen XM (2004b) Chemical evolution of Nb-Ta oxides and zircon from the Koktokay No. 3 granitic pegmatite, Altai, northwestern China. Mineral Mag 68:739–756

    Article  Google Scholar 

  • Zhang AC, Wang RC, Jiang SY, Hu H, Zhang H (2008a) Chemical and textural features of tourmaline from the spodumene-subtype Koktokay no. 3 pegmatite, Altai, northwestern China: a record of magmatic to hydrothermal evolution. Can Mineral 46:41–58

    Article  Google Scholar 

  • Zhang AC, Wang RC, Li Y, Hu H, Lu X, Ji J, Zhang H (2008b) Tourmalines from the Koktokay No. 3 pegmatite, Altai, NW China: spectroscopic characterization and relationships with the pegmatite evolution. Eur J Mineral 20:143–154

    Article  Google Scholar 

  • Zhao JX, Cooper JA (1993) Fractionation of monazite in the development of V-shaped REE patterns in leucogranite systems: evidence from a muscovite leucogranite body in central Australia. Lithos 30:23–32

    Article  Google Scholar 

  • Zhao ZH, Xiong XL, Han XD, Wang YX, Wang Q, Bao ZW, Jahn BM (2002) Controls on the REE tetrad effect in granites: evidence from the Qianlishan and Baerzhe Granites, China. Geochem J 36:527–543

    Article  Google Scholar 

  • Zhao ZH, Bao Z, Qiao Y (2010) A peculiar composite M- and W-type REE tetrad effect: evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China. Chin Sci Bull 55:2684–2696

    Article  Google Scholar 

  • Zhu YF, Zeng YS, Gu LB (2006) Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. J Asian Earth Sci 27:61–77

    Article  Google Scholar 

  • Zou TR, Li QC (2006) Rare-metal and rare earth metal deposits in Xinjiang, China. Geology Press, Beijing, pp 34–59, in Chinese

    Google Scholar 

  • Zou TR, Zhang X, Jia F, Wang R (1986) The origin of No. 3 pegmatite in Altayshan, Xinjiang. Miner Depos 5:34–48, in Chinese with English abstract

    Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to Dr. Qian Mao and Mr. Yu-Guang Ma for their assistance with EPM analyses and Yong-Sheng Liu for assistance with LA-ICP-MS analyses at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan). The manuscript was improved by the thoughtful comments of Wang Xuan-Ce, Lynette Howearth and Laurie Burn Nunes. In particular, we express our gratitude to two anonymous reviewers for their constructive comments and excellent suggestions that helped to improve the manuscript. This research was financially supported by Key project of the National Science and Technology Support Program (Grant number 2011BAB06B03-04), Knowledge Innovation Project of Chinese Academy of Sciences (Grant number KZCX2-YW-Q04-08) and Ministry of Land and Resources Comprehensive Research for Typical Mineral Deposits (Grant number 20089932).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Jian Cao or Ke-Zhang Qin.

Additional information

Editorial handling: M. Fiorentini

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 26.5 kb)

ESM 2

(DOC 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, MJ., Zhou, QF., Qin, KZ. et al. The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis. Miner Petrol 107, 985–1005 (2013). https://doi.org/10.1007/s00710-013-0270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-013-0270-x

Keywords

Navigation